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Time-dependent aka Transient methods
Time-dependent methods are particularly suitable for the determination of the reaction kinetics, and they provide often a clear 
qualitative picture of what is going on in an electrochemical cell. We concentrate, again, on the trace-ion case in the absence of 
migration and convection, leaving diffusion as the only mechanism of mass transport.

Since we are considering time-dependent behavior, we have to solve Fick’s 2nd law (in 1-D):
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An initial condition is needed which is

(7.2)

The bulk concentration      can naturally be also zero if the species ‘k’ is initially absent. “Far from the electrode” (a few mm) 
concentration naturally is     :

(7.3)

The current boundary condition completes the problem set-up, as usual:
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In an electrochemical problem, in order to obtain the dependence of current on potential, we need, in addition, the values of
the surface concentrations of the electroactive species. We have two choices: for a very fast (reversible) reaction we use 
Nernst equation and for a slow (quasi-reversible) reaction Butler-Volmer equation:
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Note that E can be time dependent, making also kox and kred potential dependent; they assume the forms of Butler-Volmer 
kinetics.

How these boundary conditions are used depends on the transient methods used, but the general solution of the Fick’s law 
proceeds applying Laplace transform. Eq. (7.1) is transformed using the derivative property of Laplace transform
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where the upper bar denotes a variable in the Laplace domain and s is the Laplace variable (do not confuse it with the 
superscript ‘s’ denoting for surface). The general solution of this differential equation is
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A(s) and B(s) are coefficients to be determined from the boundary conditions. In order to have      limited when x → 
(boundary condition, eq. (7.3)), it is required that B(s) = 0. A(s) is found using the current boundary condition (7.4):
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where the upper minus sign corresponds to an oxidation and the lower plus sign to a reduction reaction. It has to be 
emphasized that eq. (7.9) is completely general, it applies to any time-dependent electrochemical method (for a  trace-ion), 
as well as to the impedance method where a periodical perturbation signal is applied. The concentration profile in Laplace 
domain is
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In order to proceed, a particular time-dependent method must be defined. We start with the simplest possible method, a 
potential step.

(7.10)



Potential step
In the potential step experiment, electrode potential is stepped from the region where practically no current is flowing to a
value where oxidation/reduction reaction occurs. Because potential remains constant,  in eq. (7.5) is constant and we have
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Let’s consider the case where ‘O’ is initially absent. Now:                                                                  . Applying the above equation,
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Current in the time domain is obtained from an inverse transformation which can be found tabulated. The inverse 
transformation of s−1/2 is (t)−1/2. Thus,

(7.11)

If the step is done in so anodic potential that      goes to zero ( » 1), current is immediately obtained from eq. (7.9) asscR
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(7.13)Cottrell equation



Inserting eq. (7.11) into eq. (7.10), the concentration profile is obtained in Laplace domain as
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The inverse transform is found in the table as
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erf(x) is the error function and erfc(x) its complement. 

Aside: Concentration profile after a potential step to a value where surface 
concentration goes to zero; D = 10−5 cm2/s. In a general case, surface 
concentrations jump at the value where eq. (7.5) is valid.
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Current step
Another easy technique to analyze is to apply constant current density i in the cell; Laplace transform of 1 is 1/s. Hence,
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Assuming again that “O” is initially absent, the inverse transforms are found easily as

R

RR

2
)(

DnF
ti

ctc bs




O

O

2
)(

DnF
ti

tcs


and

The moment when       goes to zero is known as the transition time, t. It is give by Sand equation: scR
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Using the transition time, the surface concentrations can be written in a compact form as
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where  is defined by eq. (7.11).



Inserting these surface concentrations in Nernst equation,
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Plot aside shows how potential changes as the function of time. At t = t potential 
jumps abruptly which gives the experimental means of determining t. 

The concentration profile is calculated as follows:
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Aside simulated concentration profiles with D = 10−5 cm2/s and t = 4 s.

Note the difference between potential and current steps: in the former surface concentration and in the latter the 
concentration gradient at the surface is constant.
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