
Diffusion through a membrane
One of the most common measurements in pharmacy is the determination of drug 
permeability across a model membrane, such as skin, cornea, etc. The measurement is 
carried out either in Franz cell or in a side-by-side diffusion cell. 

Franz cell. If the membrane is skin, 
stratum corneum points upwards.

A side-by-side diffusion cell. Total width 
ca. 9 cm. Chamber volume ca. 3 cm3.



Both the donor (a) and acceptor compartments (b) are stirred so that ideally no 
consentration differences appear in their bulk solution. Samples are withdrawn from 
the acceptor compartment and its concentration determined with fluorescence or UV 
detection after separation with High Performance Liquid Chromatography (HPLC). 
Our task is to seek for the concentration as a function of time. Often the permeability 
is so low that the concentration of the acceptor compartment remains practically zero 
compared with the donor compartment. This is known as the perfect sink condition. 
In the beginning of an experiment there is a lag time during which the steady-state is 
reached. After that the consentration profile in the membrane is linear:

(8.1)

and the flux across the membrane is 
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Example:

Membrane, thickness h and surface area A, separates two compartments with 
volumes V1 and V2. Initially, c1 = c0 and c2 = 0. Calculate the concentrations c1 and 
c2 as a function of time.

This set-up corresponds to a typical drug permeation experiment.

V1, c1

h

V2, c2



Assume that both compartments are ideally stirred, i.e. they have a homogeneous 
concentration at all times. Mass balance:

V1c0 = V1c1(t) + V2c2(t)   c2(t) = V1/V2[c0 – c1(t)] (8.3)

The volume of the membrane is thus neglected.

Diffusion takes place only in the membrane, and we already know the solution:

c = B1x + B2 (8.4)

With the boundary conditions (x = 0, c = c1) and (x = h, c = c2) B1 and B2 can be 
found. The result is finally
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Diffusion reduces the amount of the solute in compartment 1:
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Collecting the constants together,
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where the initial condition c1(t = 0) = c0 has been applied. From mass balance 
(8.3) it is obtained
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This is an ordinary differential equation, its solution is
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(8.8)

(8.9)

If V1 = V2, eq. (8.9) can be written in the form where a linear fit is possible:
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Aside plots of eq. (8.8) 
(descending) and (8.9) 
(ascending).

In the side-by-side cell V1 = V2

= V, and b is very small because 
the permeability Kp = D/h across 
a membrane is often low. Hence, 
exponent can be linearized, 
giving the practical result 

Plotting the concentration of the acceptor compartment as a function of time, a 
straight line is obtained, giving the permeability from its slope.
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V1 = V2 = V
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In the beginning of the experiment 
there is the lag time before the steady-
state is reached, but after that our 
solution is accurate. The full solution 
is obtained by solving Fick’s 2. law 
(see textbook). The result is (perfect 
sink condition, donor at the constant 
concentration of c0):
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The series term vanishes rapidly, leaving a straight line that intercepts x axis at the 
point Dt/h2 = 1/6. As a consequence, the lag time of diffusion is defined as
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Since the slope of the straight line gives the permeability Kp, the actual membrane 
thickness h and furthermore D can be calculated from eq. (8.13).



Diffusion is rapid on the microscale

Einstein derived the distance l that a particle travels with Brownian motion in time t:
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Taking D = 106 cm2/s, the plot below can be drawn.
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As can be seen in plot, travelling 1 mm 
takes only 0.01 s. This is important for 
the intracellular traffic that could not be  
diffusion controlled. If cells were, say, 1 
mm across, the transport of nutrients or 
metabolites would take ~10,000 s, 
making the cell metabolism hopelessly 
slow; perhaps life would not be possible.



Fluorescence Recovery after Photo Bleaching (FRAP)
FRAP on nopea metodi suhteellisen suurikokoisten molekyylien liikkuvuuden 
määrittämiseksi. Molekyylien täytyy olla fluorisoivia tai fluoroprobella leimattuja.

A: Näytteessä fluorisoiva molekyyli, ~mM
B: Pieneltä alueelta (f ~10 mm) poltetaan laserilla 

fluorisoiva molekyyli pois
C: Fluoresenssi palautuu diffuusion ansiosta
D: Ideaalitapauksessa A-tila on palautunut

Palautumisvaiheen C käyrän muoto voidaan 
laskea teoreettisesti 2D-diffuusioyhtälöstä (Fickin 
2. laki):
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I = normalisoitu fluoresenssi-intensiteetti  [0,1]
I0 ja I1 = nollannen ja ensimmäisen kertaluokan 
modifoidut Besselin funktiot
r = poltetun alan säde

(8.15)

FRAP is a quick method the determination of the mobility of relatively large 
molecules. The molecules need to be fluorescent or fluorescence-labeled.

A: Sample with a fluorescent molecule,  mM
B: The fluorescent molecule is destroyed from a 

small area (f  10 mm) with a powerful laser
C: Fluorescence recovers due to diffusion
D: In a ideal case phase A is recovered

The shape of the phase C curve can be calculated 
from Fick’s 2nd law (2D equation):

I = normalized fluorescence intensity  [0,1]
I0 and I1 = modified Bessel functions of the zeroth 
and first order, respectively
r = the radius of the destroyed area
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E.g.: calcein, pH 10
R2 = 0.9912
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Results

peptide

BSA

calcein

Fits of FRAP data, measured in a hydrogel 
(hydroxypropyl methylcellulose)



• Dgel ~ 10−6 cm2/s (?)

• The diffusion coefficient of BSA  > Peptide (?)
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:equation Einstein-Stokes  But! B  = viscosity

r = molecule radius

gel ≈ 4000 cP ≈ 4000·w →  Dgel ≈ 1/4000·Dw ≈ 10−10 cm2/s

MW of peptide ~1200 and MW of BSA ~ 66400

r ~ MW1/3 →  Dpeptide /DBSA ≈ 3.8

Conclusion: hydrogel does not obey Stokes-Einstein equation, because it is a 
net-like structure.

Observations



Goldman constant field approximation
In biophysics Goldman constant field approximation f  Df/h is usually applied. 
Df is the potential drop across a membrane and h its thickness. The approximation is 
quite good for thin membranes with low charge density. With this approximation 
Nernst-Planck equation can be integrated. Denoting Df = fb – fa
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Eq. (9.16) defines the iontophoretic 
enhancement factor:
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As shown aside, zDf  –250 mV already 
enhances the flux ten-fold. This is why 
iontophoretic delivery of drugs has received a 
lot of attention.



Electroosmosis is observed in several types of biomembranes. Therefore, membranes 
must include small water-filled capillaries (see picture below). The passive transport 
of molecules across a membrane can be divided into aqueous and lipid contributions:

JP = Jw + Jo (8.18)
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As the conductivity of the lipid matrix is ~0, 
iontophoresis enhances only the aqueous route:

JIF = Jw·EF + Jo (8.19)

Measured iontophoretic enhancement factor EFm is 
the ratio of the iontophoretic and passive fluxes:

EFm = JIF/JP                        (8.20)

Inserting eqs. (8.18) and (8.19) into eq. (8.20), the fraction of the aqueous route x is:

Because x is very low for lipophilic molecules their iontophoretic enhancement is not 
very reasonable. Eq. (8.21) thus provides a diagnostic criterion for the feasibility of 
iontophoretic delivery of a drug.



Iontophoretic lag time
It is possible to calculate the lag time in an iontophoretic experiment by applying 
Goldman approximation in the time-dependent Nernst-Planck equation:
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The solution is rather cumbersome (see textbook), and we content to give the ratio of 
the iontophoretic and the diffusion lag time (8.13) (y = zfDf):
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Iontophoresis also reduces the lag time.



Some more transport

Let’s consider steady-state transport as depicted below:

cb, D

c = 0
c1 c2
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h dd

Membrane has the thickness h, 
and it is flanked by two diffusion 
boundary layers (DBL) of the 
thickness d. Partition coefficient 
between the solutions and the 
membrane is P. 
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Inserting this to the former eqality, c1 is obtained as the function of cb:

(8.24)

(8.25)
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Inserting eq. (8.26) into the transport equation (8.24) the result is:
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where Kp is permeability of the entire system. Interpreting D/d as the permeability of 
the DBLs and the membrane permeability as            , it is obtained thathDP /
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This result can be generalized for an arbitrary number of sequential transport steps. 
If a single step has the permeability Kp,i the total permeability Kp is
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Permeabilities of parallel processes are simply summed.



Mediated transport

Most of transport across cell membranes takes place with other mechanisms than 
passive diffusion. Passing of small ions is practically impossible. Parsegian* have 
calculated that the electrostatic energy needed to transfer an ion from water into the 
center of a membrane (thickness = h) is
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Lipids have r ≈ 2, hence taking a = 0.1 nm, z2 = 1 and h = 5 nm, the energy is ca. 
1.58 eV ≈ 153 kJ/mol. Eq. (8.30) is the Born model corrected for with a term taking 
into account the limited thickness of a membrane. Yet, 1.58 eV still is so high an 
activation energy that transfer is not possible.

The fact that ions are, however, transferring means that membranes have aqueous 
pathways and other mechanisms with which ions move passively or by utilizing ATP 
energy. According to Parsegianin the energy barrier of an aqueous pore is 118.6/b
kJ/mol where b is the pore diammeter (Å). Taking b = 5 Å, required energy is only 
ca. 24 kJ/mol.

*A. Parsegian, Nature, 221 (1969) 844-6.



hydrophobic 
molecules

O2, CO2,
N2, benzene

small non-
charged polar 
molecules

H2O, urea,
glycerol

small non-
charged polar 
molecules

glucose,
saccarose

ions

H+, Na+, 
HCO3

, K+, 
Ca2+, Cl, 
Mg2+

P
er

m
ab

ili
ty

 (
cm

/s
)

Passive permeability of molecules throgh lipid bilayer depends on the polarity and 
size. Ions do not pass it at all.
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A well-known example of a protein forming an ion channel is gramicidin-A (gA) 
that allows the transport of Na+and K+ but not Ca2+ due to its larger size. Na+/K+ 

ATPase is a famous example of active transport with ATP energy.



Helical gA channel is composed of 
two protein units.

Two gramicidin-A molecules are needed to form 
an ion channel. The diameter of the channel is 
ca. 4 Å and length ca. 50 Å. Although transport 
takes place via passive diffusion, the narrow 
pore hinders diffusion which is basically 
Brownian movement. Additionally, transport is 
affected by the interaction of the charges of the 
ion and pore wall. Neglecting even the charges, 
the ionic concentration inside the pore is*

 21  ii cc (8.31)

 = a/rp is the ratio of the ionic and pore radii. 
The effective diffusion coefficient of a non-
charged species in a non-charged channel is 
obtained via Renkin correction* if  < 0,4:

*K.A. Johnson, et al., Langmuir, 5 (1989) 932-8.
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Ionic radius in an aqueous solution is a bit problematic quantity because an ions drags 
along its hydration water. This is why the mobility of, e.g. Li+ lower than that of Na+

although its crystallographic radius is smaller. The ionic radius of K+ calculated from 
its mobility is 1.33 Å, making  = 0.665 > 0.4, beyound the applicability of Renkin 
correction. The same applies for Na+ and Cl. If  = 0.4, Deff /D ≈ 0.1, which proves 
that the channel is slowing transport down significantly.
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Although the rate of transport through gA-
channel cannot be calculated accurately, it 
is clear that it is an order of magnitude 
lower than in free solution. In terms of the 
increase of the activation energy Deff /D = 
0.1 corresponds to ca. 5.7 kJ/mol  (at 298 
K).

Renkin correction



If pores are sparse, like in the eye membranes, transport is no more driven by the 
concentration gradient (diffusion), but a molecule is passing through only when it hits 
the mouth of a pore. This process is more like effusion than diffusion. The rate of 
effusion is proportional to the collision frequency of molecules with the membrane 
and hence to its concentration, not its concentration gradient. A scheme of effusion in 
solution (left) and the flux through rabbit conjunctiva as the function of the inverse of 
the hydrodynamic (▲) and Stokes radii (∆) of polyethylene glycols (right). Pore size in 
the membrane 8 – 14 Å. (K.M. Hämäläinen et al. J. Contr. Rel. 49 (1997) 97-104)


