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Ion-selective membranes

An ion-exchange membrane is a polymer matric containing immobilized ion exchange groups, 
in cation exchangers typically sulphonic acid (Nafion) and in anion exchangers amines. In 
Nafion it is ca. 3 mol/dm3. Ion exchange capacity of the matrix is the concentration of the fixed

Schematic structure of a cation 
exchanger. Solid lines depict for 
reinforcement.

concentration of the fixed groups á dry mass of the 
matrix because an ion exchanger swells significantly in 
the solution due to its high ionic strength, causing an 
osmotic pressure. Ions with a charge opposite to the 
fixed groups are called counter-ions, and ions with a like 
charge co-ions. Subscript “1” is used for the counter-ion 
and “2” for the co-ion. 

A cation exchanger can be delivered in sodium form, i.e. 
with Na+ counter-ions. It is converted to hydrogen form 
by immersing it in strong acid solution, and back to 
sodium form with NaOH solution.



Donnan equilibrium in an ion-exchanger

The general equilibrium condition between any phases is the equality of the electrochemical 
potential. Hence, for an ion:

(9.3)

where the mean electrolyte activity coefficient, g12, and mean electrolyte concentration, c±,12, 
are used; u12 = u1 + u2. Check Lecture 1 for their definitions (or textbook p. 154). Note that 
due to electroneutrality the Galvani potential terms are canceled out.

Solving for the partitioning of an ion between an aqueous phase and a membrane it is 
obtained:
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and for an electrolyte:
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Remembering the expression of the electrochemical potential,  0 lni i i i iRT c z F    g  
the equilibrium conditions become
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where D = M − w is the Donnan potential (that cannot be measured) and f = F/RT. 
Because membranes usually contain quite a lot of water, the difference between the 
standard chemical potentials is ignored. Also, the activity coefficient ratio approaches unity 
much faster that individual activity coefficients. Therefore, we reach much simpler and 
useful equations:
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Note that the mean electrolyte concentration is continuous across a phase boundary. As 
discussed in textbook pp. 154-155, in water the electrolyte concentration c12 is related to 
the ionic concentrations via Eqs. (4.112-113) but in a membrane via Eq. (4.114), which is the 
reason for using the mean electrolyte concentration instead. Considering one electrolyte, 
electroneutrality in a membrane reads
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Note that X is always positive. For a symmetric electrolyte, u1 = u2 = u, z1 = −z2, M M
1 2 .X c c 

Applying eq. (9.5),
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Multiplying the above equations with each other it is seen that                          as expected. 2M M w
1 2 12 ,c c c

This result would have been obtained more simply by solving the 2nd order equation
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For asymmetric electrolytes Donnan potential must be solved numerically, or as a root of a 
3rd order polynomial with respect of           .

2:1 electrolyte, z1 = −2z2, u1 = 1, u2 = 2:
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1:2 electrolyte, 2z1 = −z2, u1 = 2, u2 = 1:
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Donnan potentials: 

1:1 electrolyte (orange), 

2:1 electrolyte (blue), 

1:2 electrolyte (green).



Counter-ion concentrations: 

1:1 electrolyte (orange), 

2:1 electrolyte (blue), 

1:2 electrolyte (green).

Co-ion concentrations: 

1:1 electrolyte (orange), 

2:1 electrolyte (blue), 

1:2 electrolyte (green).



Potential profile in the solution close to the charged membrane surface

Potential can be solved from the Poisson-Boltzmann equation 
2
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where  = charge density. Boundary conditions: () = (d/dx) = 0. An analytical solution is 
available for symmetric z:z electrolytes:
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(9.15)

The quantity –1 is known as the Debye length, because it has the unit of length, describing 
the thickness of the electric double layer. In an aqueous solution with c = 1.0 mM, at T = 298 
K, –1  10 nm. The linearized form of eq. (9.14) is (tanh(x)  x),

0( ) .xx e   (9.16)
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Simulated potential profiles, F0/RT = ±5: 1:1 electrolyte (blue), 2:1 electrolyte (green), 1:2 
electrolyte (red). Black dotted line depicts the linearized equation (9.16). When 0 > 0, 2:2 
electrolyte curve almost coincides with the 1:2 electrolyte curve (red), and when 0 < 0, 2:1 
electrolyte curve (green). Note how the order of curves is changed with 0.



The surface charge s (C/cm2) and potential 0 are connected by
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Due to the potential profile the concentration of 
counter-ions increases and the concentration of 
co-ions decreases by the amount  exp(zF0/RT) at 
the surface. Aside: simulated conc. profiles for a 
1:1 electrolyte, when z0/RT = +5, i.e. 0 ≈ 130 mV. 
If c12

w = 10 mM, s ≈ 7 C/cm2 and 1 ≈ 3 nm. This 
surface charge corresponds to 7.4×1011 mol/cm2

(z = +1) which in turn corresponds to the solution 
charge 0.62 M.
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For a symmetric z:z electrolyte it is obtained:
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Inside of an ion exchange membrane the potential profile is
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Dimensionless potential profile (a) and charge density 
(b).                100 (──), 10 (─ ─) ja 1 (- - -). z is the charge 
number of the counter-ion.
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From eq. (9.19) it is possible to calculate the connection between the charge density of an 
ion exchanger and the surface potential 0:
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