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The official description of the course prerequisites is: “Some advanced algebra,
geometry and topology. Mathematical maturity is more important than specifics. If
available, taking any course in applied or numerical algebraic geometry in advance is
useful. Prospective students are encouraged to take a glance at the study material.”
In this note we parse this out in greater detail, as requested by some students, and
provide a list of exercises that should work as a warm-up before the course actually
starts. Some of these exercises will probably be discussed during the very first
exericse session at the very beginning of the course. It’s not mandatory to present
a solution, but it’s in your best interest to know these facts. You might be able to
solve part of these exercises without writing anything down, as most of them are
meant to be easy.

Commutative algebra

In this course we will always assume that rings are commutative. You should have
familiarity with the following notions: ring, (radical, prime, maximal) ideal, ring
homomorphism, kernel of a homomorphism, quotient of a ring, R-modules, sub-
modules, module homomorphisms, quotient of a module, operations on modules or
ideals (like taking their sum, direct sum, intersection,. . . ). You should be acquainted
with fundamental results such as the following.

Theorem 1 (correspondence theorem for rings). Let R be a ring and let I be an
ideal of R. There is a bijection between the sets

{ideals of R containing I} −→ {ideals of R/I}
J 7−→ J.

Theorem 2 (first isomorphism theorem for modules). Let R be a ring and let M1

and M2 be R-modules. Let ϕ : M1 → M2 be a homomorphism of R-modules. Then
there is an isomorphism

R/ ker(ϕ) ∼= im(ϕ).
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The following exercises should be crystal clear. Again, by “ring” we mean a
commutative ring, containing a unit element 1. In the course we will not assume in
general that 1 6= 0. In fields and integral domains, by definition 0 6= 1.

Exercise 3. Let I be an ideal of a ring R. Prove the implications

I is maximal ⇒ I is prime ⇒ I is radical.

Exercise 4. Let I be an ideal of a ring R. Show that

1. I is a radical ideal iff R/I does not contain nilpotent elements other than 0;

2. I is a prime ideal iff R/I is an integral domain;

3. I is a maximal ideal iff R/I is a field.

Let k be a ring (usually it will be a field) and S = k[x1, . . . , xn] be the polynomial
ring with coefficients in k and n variables.

Exercise 5. Give examples in Z and in S (for some k of your choice) of ideals
that are prime but not maximal, and ideals that are radical but not prime. Give
examples of rings where it’s not possible to find such ideals.

Exercise 6. Determine whether the following statements are true or false.

1. The map S → S that takes a polynomial and replaces every variable with the
number 1 ∈ k is a ring homomorphism.

2. The same map as above is a homomorphism of S-modules.

3. Every ideal of Z is principal (i.e., it can be generated by a single element).

4. Every ideal of S is principal. (Does the answer depend on k or n?)

Exercise 7. Let R be a ring. Show that the following are equivalent:

• every ideal in R is finitely generated,

• any strictly increasing (with respect to inclusion) chain of ideals in R is finite.

If a ring R satisfies the equivalent conditions in the exercise above, R is called a
Noetherian ring. Familiarity with this concept is recommended. For instance, Z is
Noetherian, any field is Noetherian, and if R is a Noetherian ring then a polynomial
ring with coefficients in R and finitely many variables is Noetherian (this last fact
is Hilbert’s basis theorem).

Rings that have exactly one maximal ideal are called local rings. Some familiarity
with them (in particular, with localizations) could be helpful.
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Classical algebraic geometry
Let k be a field. In classical algebraic geometry, one studies algebraic varieties, that
is, the zero loci of some polynomials. For instance the unit circle

x2 + y2 = 1

is the zero locus of the polynomial x2+y2−1. For an ideal I ⊂ k[x1, . . . , xn], denote

V (I) := {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 for all f ∈ I}

the algebraic variety associated to I. Be aware that this definition is just meant for
this document. In the actual course things will be more abstract.

Exercise 8. If possible (for k and n of your choice), give examples of

• V (I) equal to a finite set of points;

• V (I) equal to an infinite set of isolated points;

• V (I) equal to the union of two disjoint curves;

• V (I) equal to a plane;

• V (I) equal to the empty set.

You should know what projective spaces are.

Exercise 9. What goes wrong if one defines projective varieties (that is, in a pro-
jective space instead of kn) in the same way as above? How should one define things
in the projective setting in order to be as close as possible to the definition of V (I)
above?

You should have at least some familiarity with the concept of variety, in the
sense that what is written above should at least ring a bell.

Definition 10 (Zariski topology, rudimentary version). Let τ be the topology on
kn whose closed sets are the varieties V (I), for I ⊂ k[x1, . . . , xn].

Exercise 11. 1. Show that τ is a topology on kn. (You may want to show in
particular that V (I ∩ J) = V (IJ) = V (I) ∪ V (J).)

2. Is (kn, τ) a Hausdorff space?

3. What is the relation between the Euclidean topology and the Zariski topology
on Rn (that is, for k = R)?

4. If k is a finite field, describe the Zariski topology on kn.
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