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Materials science is entering the data age. This transition is spearheaded by projects such as the Materials Genome Initiative,1 the Novel Materials 

Discovery Laboratory2 and Marvel3 that combine high-throughput screening with data storage, systematic data curation and machine learning. Such 

projects produce computational materials databases that contain information extracted from atomistic simulations, e.g., system geometries, details of the 

applied theory, electronic structures, methodology and implementation and their number is increasing rapidly.4–14

A common problem in these databases is materials classification. Often database users would like to search for specific material types, specific 

functions or structural classes, such as crystals, molecules, surfaces or 2D materials. To facilitate such searches, the database entries should be tagged 

according to a classification system. Unfortunately, classifications are not always provided when the data are uploaded to the database, and when they are, 

they are often based on custom or unspecified definitions. To cope with large heterogeneous datasets from atomistic calculations, automated and verifiable 

methods for analyzing and categorizing atomistic structures have become a necessity.

Previous work on automated classification of atomistic structures has focused on very specific areas and often required an explicit structural search 

pattern. For example, defect identification and detection schemes have been developed for crystals that are based on neighbourhood analysis.15–20 In 

another example, a more automated workflow was applied to identify lower dimensional stable structures in crystals, such as layered solids.21 Conversely, 

many tools are available for the inverse problem that generates an atomistic representation from a given structure definition. Tool sets such as the atomic 

structure environment (ase)22 and pymatgen23 include routines for automating tasks like creating a surface given a lattice, orientation and number of layers, 

generating crystal structures with desired symmetry properties or generating a system representing surface adsorption, given an adsorbate and an 

adsorbant.

In this work, we focus on structural classification and present a generic structure classification scheme that encompasses all possible structure types. 

We then introduce a materials structure genealogy presented as an intuitive and human-readable materials structure 'tree of life’. After this general 

introduction, we present an automatic and accurate classification scheme for two-dimensional structures, including surfaces and 2D materials, that requires 

no explicit search patterns. This classification process also returns the underlying unit cell and works even in the presence of defects, dislocations and 

additional atoms. By being able to identify the unit cell, these structures can be meaningfully characterized and often linked to their bulk counterpart. We 

also present methods that can be used to accurately identify the outlier atoms that are not part of the underlying structure. The classification does not 

make assumptions about the used cell or the positioning of the structure within the cell.

The NOMAD Archive2 is used as a benchmark for testing the classification accuracy and the applicability of our method in a realistic database 

environment containing heterogeneous data. The classification tools are implemented as a python library licensed under the open-source Apache 224

license, and the source code together with installation instructions can be found from https://github.com/SINGROUP/matid. This library is directly 

compatible with the popular atomic structure manipulation library ase.

Source: Himanen, L., Rinke, P. & Foster, A.S. Materials structure genealogy and high-throughput topological classification of surfaces and 2D materials.npj Comput Mater 4, 52 (2018). CC-BY-4.0.  
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screening with data storage, systematic data curation and machine learning. Such projects produce 

computational materials databases that contain information extracted from atomistic simulations, e.g., 
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able to identify the unit cell, these structures can be meaningfully characterized and often linked to their 
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Materials science is entering the data age. This transition is spearheaded by projects such as the Materials 

Genome Initiative,1 the Novel Materials Discovery Laboratory2 and Marvel3 that combine high-throughput 

screening with data storage, systematic data curation and machine learning. Such projects produce 

computational materials databases that contain information extracted from atomistic simulations, e.g., 

system geometries, details of  the applied theory, electronic structures, methodology and implementation and 

their number is increasing rapidly.4–14 (Introduces the context)

A common problem in these databases is materials classification. Often database users would like to 

search for specific material types, specific functions or structural classes, such as crystals, molecules, surfaces 

or 2D materials. [ . . . ] (Further explains the problem) To cope with large heterogeneous datasets from atomistic 

calculations, automated and verifiable methods for analyzing and categorizing atomistic structures have 

become a necessity.

[cut two paragraphs]

The NOMAD Archive2 is used as a benchmark […]. The classification tools are implemented as a 

python library licensed under the open-source Apache 224 license, and the source code together with 

installation instructions can be found from https://github.com/SINGROUP/matid. This library is directly 

compatible with the popular atomic structure manipulation library ase. (Summaries experimental approach)

Source: Himanen, L., Rinke, P. & Foster, A.S. Materials structure genealogy and high-throughput topological classification of surfaces and 2D materials.npj Comput Mater 4, 52 (2018). CC-

BY-4.0.  
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installation instructions can be found from https://github.com/SINGROUP/matid. This library is directly 

compatible with the popular atomic structure manipulation library ase. (Summaries experimental approach)
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Design of  high-efficiency and high-performance electrical machine requires accurate prediction of  

resistive winding losses. These losses can be divided into skin- and proximity effects, and circulating 

currents. The latter can be especially significant and dominate in random-wound machines with 

stranded windings and a high-supply frequency, such as high-speed machines and multipole permanent 

magnet machines. Indeed, resistive loss increases of  several tens of  per cent have been observed [1, 2].

Due to manufacture reasons, the positions of  the strands in a random-wound winding cannot be 

exactly known or controlled. In other words, their positions can be regarded as uncertain. 

Furthermore, they can vary significantly from slot to slot and machine to machine. Correspondingly, 

the circulating current losses also often exhibit significant variance, even between nominally identical 

machines [3]. As such, the losses are also stochastic in nature.

This paper extends the authors' previous work in [3] for uncertainty quantification of  the circulating 

current losses. First, an equivalent circuit approach for modelling stranded windings is briefly 

recounted. Next, a phenomenological sampling algorithm is proposed for modelling the uncertainty in 

the winding. This algorithm is then coupled to the circuit model. Finally, the statistical properties of  the 

resistive losses are then estimated with Monte Carlo analysis and compared to measurement data.

Source: Lehikoinen, A., Chiodetto, N., Arkkio, A., & Belahcen, A. (2019). Improved sampling algorithm for stochastic modelling of random-wound electrical machines. The Journal of Engineering, (17), 

3976-3980. https://doi.org/10.1049/joe.2018.8093 CC-BY-4.0
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Design of  high-efficiency and high-performance electrical machine requires accurate prediction of  
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2. Unknown or problem

• State the unknown/problem (gap)

• Use negative language to signal it

• Keep tone respectful and objective

• Use standard academic phraseology
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2. Unknown or problem

Little is known about X

None of  these studies explain …

Previous studies have not yet dealt with …

Previously published studies on X are not 

consistent

See 

http://www.phrasebank.manchester.ac.uk/introducing-work/

Image: CC-BY-0

http://www.phrasebank.manchester.ac.uk/introducing-work/
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Materials science is entering the data age. This transition is spearheaded by projects such as the 

Materials Genome Initiative,1 the Novel Materials Discovery Laboratory2 and Marvel3 that combine 

high-throughput screening with data storage, systematic data curation and machine learning. Such 

projects produce computational materials databases that contain information extracted from atomistic 

simulations, e.g., system geometries, details of  the applied theory, electronic structures, methodology 

and implementation and their number is increasing rapidly.4–14

A common problem in these databases is materials classification. Often database users would 

like to search for specific material types, specific functions or structural classes, such as crystals, 

molecules, surfaces or 2D materials. To facilitate such searches, the database entries should be tagged 

according to a classification system. To facilitate such searches, the database entries should be tagged 

according to a classification system. Unfortunately, classifications are not always provided when the 

data are uploaded to the database, and when they are, they are often based on custom or unspecified 

definitions. To cope with large heterogeneous datasets from atomistic calculations, automated and 

verifiable methods for analyzing and categorizing atomistic structures have become a necessity.

2. Unknown or problem

Problem

signaled

but with

attitudinal

language

Source: Himanen, L., Rinke, P. & Foster, A.S. Materials structure genealogy and high-throughput topological classification of surfaces and 2D materials.npj Comput Mater 4, 52 (2018). CC-

BY-4.0.  
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Design of  high-efficiency and high-performance electrical machine requires accurate prediction of  

resistive winding losses. These losses can be divided into skin- and proximity effects, and circulating 

currents. The latter can be especially significant and dominate in random-wound machines with stranded 

windings and a high-supply frequency, such as high-speed machines and multipole permanent magnet 

machines. Indeed, resistive loss increases of  several tens of  per cent have been observed [1, 2].

Due to manufacture reasons, the positions of  the strands in a random-wound winding cannot be 

exactly known or controlled. In other words, their positions can be regarded as uncertain. Furthermore, 

they can vary significantly from slot to slot and machine to machine. Correspondingly, also the 

circulating current losses often exhibit significant variance, even between nominally identical machines 

[3]. As such, the losses are also stochastic in nature.

This paper extends the authors' previous work in [3] for uncertainty quantification of  the circulating 

current losses. First, an equivalent circuit approach for modelling stranded windings is briefly recounted. 

Next, a phenomenological sampling algorithm is proposed for modelling the uncertainty in the winding. 

This algorithm is then coupled to the circuit model. Finally, the statistical properties of  the resistive 

losses are then estimated with Monte Carlo analysis and compared to measurement data.

Source: Lehikoinen, A., Chiodetto, N., Arkkio, A., & Belahcen, A. (2019). Improved sampling algorithm for stochastic modelling of random-wound electrical machines. The Journal of 

Engineering, (17), 3976-3980. https://doi.org/10.1049/joe.2018.8093 CC-BY-4.0
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The aluminum reduction cell, hereafter referred to as ‘‘the cell,” is a complex multi-variable system, which is characterized by energy balance and 

mass balance coupling. The electrolyte temperature (ET) can be reduced by decreasing the liquidus temperature based on aluminum fluoride (AlF3) 

addition, and thus reducing the loss of molten aluminum [1,2]. A well-shaped hearth can be obtained with a precise AlF3 feeding amount (AFA) to 

a certain degree [3]. Some research indicates that a well-shaped cell hearth will result in high current efficiency [4,5]. However, an inaccurate AFA 

may cause a large fluctuation of the side ledge (SL), which will prevent the ideal energy equilibrium from being achieved. Asa result of the inherent 

complexity of the reduction process, making the decision on the amount of AlF3 addition (MDAAA) mainly relies on technicians and experts. 

However, it is difficult for inexperienced technicians to perform this task. Because experienced experts may not always be available, circumstances 

of excess or insufficient AFA frequently occur. Therefore, it is desirable for an accurate AlF3 addition to be determined using a scientific strategy.  

These problems have attracted the attention of researchers. There are three types of research on MDAAA, all of which mainly focus on 

controlling the AlF3 concentration (CAlF3). The first type of research takes an empirical approach that depends on understanding the dynamic of 

AlF3. CAlF3 is monitored by analyzing electrolyte samples, which is done very sporadically. This method has revealed a very strong correlation 

between CAlF3 and temperature [6]. Temperature and electrolyte sample analysis with a time lag (TL) are used in CAlF3 adjusting strategies in the 

control feedback loop; building a logic rule base is the core method for these strategies [7–9]. The second type of research considers AFA as a 

function of deviation from a target CAlF3 and/or temperature. In practice, CAlF3 was found to change with the SL thickness, and some linear 

regression models for MDAAA were proposed [10–12]. In the third type of research, strategies are proposed based on the AlF3 mass balance 

and/or energy balance. MDAAA models have been built by analyzing AlF3 evolution from cells, and CAlF3 control strategies weredeveloped 

based on estimation and decoupling techniques with detailed process and plant knowledge [13–17]. The methods in the first type of research always 

rely on human experience, and it is easy for human subjectivity to influence knowledge model construction. Because of the complexity of making a 

decision about the amount of AlF3, it is difficult for methods of the second type to capture all of the complex features of AlF3 addition. Due to the 

detection of dead zones in the aluminum reduction cell, it is difficult to implement refined AlF3 addition using methods of the third type, which are 

based on AlF3 mass balance and/or energy balance.

Existing research on MDAAA mainly focuses on data-driven or knowledge-driven methods alone. However, data-driven methods may fail to 

cover the complex characteristics of the cell, and knowledge-driven methods may be overly subjective. Therefore, it is desirable to develop a model 

that combines historical data with the experience of experts. To address this challenge, modeling with fuzzy cognitive maps (FCMs) seems practical, 

as it is characterized by intuition and the simplicity of causal representations [18]. FCMs have been widely used in decisionanalysis, control, 

modeling, and prediction [19–22]. (Due to space limitations, the remainder of this introduction was omitted.)

Source: Weichao Yue, Weihua Gui, Xiaofang Chen, Zhaohui Zeng, Yongfang Xie. A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount of Aluminum 

Fluoride Addition Based on Augmented Fuzzy Cognitive Maps[J].Engineering,2019,5(6):1060-1076. Open Access under CC-BY-NC-ND-4.0
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The aluminum reduction cell, hereafter referred to as ‘‘the cell,” is a complex multi-variable system, which is 

characterized by energy balance and mass balance coupling. The electrolyte temperature (ET) can be 

reduced by decreasing the liquidus temperature based on aluminum fluoride (AlF3) addition, and thus 

reducing the loss of  molten aluminum [1,2]. A well-shaped hearth can be obtained with a precise AlF3 

feeding amount (AFA) to a certain degree [3]. Some research indicates that a well-shaped cell hearth will 

result in high current efficiency [4,5]. However, an inaccurate AFA may cause a large fluctuation of  the side 

ledge (SL), which will prevent the ideal energy equilibrium from being achieved. As a result of  the inherent 

complexity of  the reduction process, making the decision on the amount of  AlF3 addition (MDAAA) 

mainly relies on technicians and experts. However, it is difficult for inexperienced technicians to perform 

this task. Because experienced experts may not always be available, circumstances of  excess or insufficient 

AFA frequently occur. Therefore, it is desirable for an accurate AlF3 addition to be determined using a 

scientific strategy.  

These problems have attracted the attention of  researchers. There are three types of  research on 

MDAAA, all of  which mainly focus on controlling the AlF3 concentration. [ . . . ] (Explains the pluses and 

minuses of  the three types of  research)

Existing research on MDAAA mainly focuses on data-driven or knowledge-driven methods alone. 

However, data-driven methods may fail to cover the complex characteristics of  the cell, and knowledge-

driven methods may be overly subjective.  Therefore, it is desirable to develop a model that combines 

historical data with the experience of  experts. To address this challenge, [ . . . ]  

2. Unknown or problem

Signals 
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with

negative

language

Source: Weichao Yue, Weihua Gui, Xiaofang Chen, Zhaohui Zeng, Yongfang Xie. A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount of Aluminum 

Fluoride Addition Based on Augmented Fuzzy Cognitive Maps[J].Engineering,2019,5(6):1060-1076. Open Access under CC-BY-NC-ND-4.0



Contrast Verbs Quantity Adjectives

however

nevertheless

despite

although

but

fail

ignore

lack

prevent

hinder

neglect

overlook

question

challenge

deter

limit

few

less

little

no

not

none

scare

limited

restricted

difficult

inefficient

controversial

ineffective

inconclusive

uncertain

unclear

unreliable

unsatisfactory

Signaling the gap > Any indication of 

• Contrast? However /nevertheless / despite

• Negative elements? Little is know about / None of  these studies . . . 

• Extending previous knowledge? Studies . . . are still needed

2. Unknown or problem
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• State the central question or purpose

• No question marks!  

• Relate every part of the paper to the 

question or purpose

Image: CC-BY-0
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Avoid vague verbs

3. Question/Purpose

c
This paper focuses on describing 

the process for identifying 

service value and transferring 

this knowledge into concept 

design.

This paper studies the process 

for identifying service value and 

transferring this knowledge into 

concept design.

Source: Lappalainen, Pia. Journal of Academic Writing, Vol. 6 No 1 Autumn 2016, pages 108-121

Obscure

unarticulated

purposes



3. Question/Purpose

39

Three typical purpose 

statements in engineering 

and related descriptive 

verbs

Text source: Lappalainen, Pia. Journal of Academic Writing, Vol. 6 No 1 Autumn 2016, pages 108-121. Image: CC-BY-0



1. Comprehending a phenomenon analyze, compare, examine, 
investigate, define,  determine, 
monitor,  understand, 
experiment with

Three types of purpose statements

3. Question/Purpose

40

Descriptive verbs

Source: Lappalainen, Pia. Journal of Academic Writing, Vol. 6 No 1 Autumn 2016, pages 108-121. 



1. Comprehending a phenomenon

2. Designing a solution

build, construct, develop, 
model, integrate, propose

Three types of purpose statements

3. Question/Purpose

Source: Lappalainen, Pia. Journal of Academic Writing, Vol. 6 No 1 Autumn 2016, pages 108-121. 41

Descriptive verbs



1. Comprehending a phenomenon

2. Designing a solution

3. Applying verified knowledge of a 

product or service in practice

confirm, compare, 
corroborate, experiment with, 
evaluate, measure, monitor,  
prove, simulate, test, validate, 
verify

Three types of purpose statements

3. Question/Purpose

42

Descriptive verbs

Source: Lappalainen, Pia. Journal of Academic Writing, Vol. 6 No 1 Autumn 2016, pages 108-121. 
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Hm, what verb did I 

use in my purpose

statement?

3. Question/Purpose
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Materials science is entering the data age. [ . . .] (Introduces the context)

A common problem in these databases is materials classification. Often database users would like to 

search for specific material types, specific functions or structural classes, such as crystals, molecules, surfaces 

or 2D materials. [ . . . ] (Further explains the problem)

Previous work on automated classification of  atomistic structures has focused on very specific areas and 

often required an explicit structural search pattern. [ . . . ] (Provides examples) Conversely, many tools are 

available for the inverse problem that generates an atomistic representation from a given structure 

definition. [ . . . ] (Provides examples)

In this work, we focus on structural classification and present a generic structure classification scheme 

that encompasses all possible structure types. We then introduce a materials structure genealogy presented 

as an intuitive and human-readable materials structure 'tree of  life’. After this general introduction, we 

present an automatic and accurate classification scheme for two-dimensional structures, including surfaces 

and 2D materials, that requires no explicit search patterns. This classification process also returns the 

underlying unit cell and works even in the presence of  defects, dislocations and additional atoms. By being 

able to identify the unit cell, these structures can be meaningfully characterized and often linked to their 

bulk counterpart. We also present methods that can be used to accurately identify the outlier atoms that are 

not part of  the underlying structure. The classification does not make assumptions about the used cell or 

the positioning of  the structure within the cell. 

3. Question or purpose

Source: Himanen, L., Rinke, P. & Foster, A.S. Materials structure genealogy and high-throughput topological classification of surfaces and 2D materials..npj Comput Mater 4, 52 (2018).. 

CC-BY-4.0.  

Use 
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Materials science is entering the data age. [ . . .] (Introduces the context)

A common problem in these databases is materials classification. Often database users would like to 

search for specific material types, specific functions or structural classes, such as crystals, molecules, surfaces 

or 2D materials. [ . . . ] (Further explains the problem)

Previous work on automated classification of  atomistic structures has focused on very specific areas and 

often required an explicit structural search pattern. [ . . . ] (Provides examples) Conversely, many tools are 

available for the inverse problem that generates an atomistic representation from a given structure 

definition. [ . . . ] (Provides examples)

In this work, we focus on structural classification and present a generic structure classification scheme 

that encompasses all possible structure types. We then introduce a materials structure genealogy presented 

as an intuitive and human-readable materials structure 'tree of  life’. After this general introduction, we 

present an automatic and accurate classification scheme for two-dimensional structures, including surfaces 

and 2D materials, that requires no explicit search patterns. This classification process also returns the 

underlying unit cell and works even in the presence of  defects, dislocations and additional atoms. By being 

able to identify the unit cell, these structures can be meaningfully characterized and often linked to their 

bulk counterpart. We also present methods that can be used to accurately identify the outlier atoms that are 

not part of  the underlying structure. The classification does not make assumptions about the used cell or 

the positioning of  the structure within the cell. 

3. Question or purpose

Source: Himanen, L., Rinke, P. & Foster, A.S. Materials structure genealogy and high-throughput topological classification of surfaces and 2D materials..npj Comput Mater 4, 52 (2018).. 

CC-BY-4.0.  

To overcome these existing problems with structural classification, we present
Use 
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The aluminum reduction cell, hereafter referred to as "the cell,” is a complex multi-variable system, which [ . . . ] 

(Outlines the problem). Therefore, it is desirable for an accurate AlF3 addition to be determined using a scientific 

strategy. 

These problems have attracted the attention of  researchers. There are three types of  research on MDAAA, 

all of  which mainly focus on controlling the AlF3 concentration. [ . . . ] (Explains the pluses and minuses of  the three 

types of  research.)

Existing research on MDAAA mainly focuses on data-driven or knowledge-driven methods alone. However, 

data-driven methods may fail to cover the complex characteristics of  the cell, and knowledge-driven methods 

may be overly subjective. Therefore, it is desirable to develop a model that combines historical data with the 

experience of  experts. To address this challenge, modeling with fuzzy cognitive maps (FCMs) seems practical, 

as it is characterized by intuition and the simplicity of  causal representations [18]. FCMs have been widely used 

in decision analysis, control, modeling, and prediction [19–22]. [ . . .] (Gives examples)

In this study, a data and knowledge collaboration strategy for MDAAA is proposed, combined with 

experiential knowledge from experts and data from the aluminum reduction process. The available data is used 

to extract meaningful fuzzy rules based on fuzzy decision trees and the clustering method, and is also used to 

detect the edge strength using the state transition algorithm (STA). [ . . . ] (Further explains the experimental 

procedure) To the best of  our knowledge, this is the first time that a collaboration model that simultaneously 

integrates expert knowledge with production data is used for MDAAA based on augmented FCMs. In this 

study, the validity of  the proposed strategy is verified.

3. Question or purpose

Source: Weichao Yue, Weihua Gui, Xiaofang Chen, Zhaohui Zeng, Yongfang Xie. A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount of Aluminum 

Fluoride Addition Based on Augmented Fuzzy Cognitive Maps[J].Engineering,2019,5(6):1060-1076. Open Access under CC-BY-NC-ND-4.0

Purpose:

Signaled 

with  

passive 

voice



47

Design of  high-efficiency and high-performance electrical machine requires accurate prediction of  

resistive winding losses. These losses can be divided into skin- and proximity effects, and circulating 

currents. The latter can be especially significant and dominate in random-wound machines with stranded 

windings and a high-supply frequency, such as high-speed machines and multipole permanent magnet 

machines. Indeed, resistive loss increases of  several tens of  per cent have been observed [1, 2].

Due to manufacture reasons, the positions of  the strands in a random-wound winding cannot be 

exactly known or controlled. In other words, their positions can be regarded as uncertain. Furthermore, 

they can vary significantly from slot to slot and machine to machine. Correspondingly, also the 

circulating current losses often exhibit significant variance, even between nominally identical machines 

[3]. As such, the losses are also stochastic in nature.

This paper extends the authors' previous work in [3] for uncertainty quantification of  the circulating 

current losses. First, an equivalent circuit approach for modelling stranded windings is briefly recounted. 

Next, a phenomenological sampling algorithm is proposed for modelling the uncertainty in the winding. 

This algorithm is then coupled to the circuit model. Finally, the statistical properties of  the resistive 

losses are then estimated with Monte Carlo analysis and compared to measurement data.

Source: Lehikoinen, A., Chiodetto, N., Arkkio, A., & Belahcen, A. (2019). Improved sampling algorithm for stochastic modelling of random-wound electrical machines. The Journal of 

Engineering, (17), 3976-3980. https://doi.org/10.1049/joe.2018.8093 CC-BY-4.0

Purpose:

Extend 

previous 

work

3. Question or purpose
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Our daily social life is filled with joint actions, during which we adjust our movements according to the 

ongoing actions of  others to fit the demands of  various tasks. Behavioral studies have shown [ . . . ] 

(Summarizes the main point) However, the neural basis of  such between-individuals mutual adaptation is 

still unclear.

In studies of  social cognition, increasing attention is currently being paid to [ . . . ] (States the key 

point and cites related literature)

Hyperscanning studies have provided insight into [ . . .] (States the key point and cites related literature)

However, these studies have not linked [ . . . ] (States the research gap)

A number of  brain-imaging studies have demonstrated that limb kinematics parameters, [ . . . ] 

(Summarizes the related literature) Coupling between limb kinematics and brain activity thus seems a useful 

measure to study the neural underpinnings of  one's own movements.

The present study aimed to clarify how social interaction modulates movement parameters and the brain 

activity related to hand kinematics. For this purpose, we adopted a joint hand-movement task in which 

one subject of  a dyad either followed or led the movements of  their partner. [ . . . ] (Summarizes the 

experimental procedure)

3. Question or purpose

Indirect

question
signaling

purpose

Source: Zhou G, Bourguignon M, Parkkonen L, Hari R. Neural signatures of hand kinematics in leaders vs. followers: A dual-MEG study. Neuroimage. 2016;125:731-738.  doi:10.1016/ 

neuroimage.2015.11.002    CC-BY-4.0



4. Experimental approach



4. Experimental approach
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• Include a few sentences about 

the experimental approach

• Optionally: Results and 

significance

Image: CC-BY-0
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Materials science is entering the data age. [ . . . ] (Introduces the context)

A common problem in these databases is materials classification. Often database users would like to 

search for specific material types, specific functions or structural classes, such as crystals, molecules, 

surfaces or 2D materials. [  . . . ] (Further explains the problem)

Previous work on automated classification of  atomistic structures has focused on very specific areas 

and often required an explicit structural search pattern. [ . . . ] (Gives examples) Conversely, many tools are 

available for the inverse problem that generates an atomistic representation from a given structure 

definition. [ . . . ] (Gives examples)

In this work, we focus on structural classification and present a generic structure classification scheme 

that encompasses all possible structure types. We then introduce a materials structure genealogy presented 

as an intuitive and human-readable materials structure 'tree of  life’. After this general introduction, we 

present an automatic and accurate classification scheme for two-dimensional structures, including surfaces 

and 2D materials, that requires no explicit search patterns. This classification process also returns the 

underlying unit cell and works even in the presence of  defects, dislocations and additional atoms. By being 

able to identify the unit cell, these structures can be meaningfully characterized and often linked to their 

bulk counterpart. We also present methods that can be used to accurately identify the outlier atoms that are 

not part of  the underlying structure. The classification does not make assumptions about the used cell or 

the positioning of  the structure within the cell. 

Source: Himanen, L., Rinke, P. & Foster, A.S. Materials structure genealogy and high-throughput topological classification of surfaces and 2D materials..npj Comput Mater 4, 52 (2018).. 

CC-BY-4.0.  
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The aluminum reduction cell, hereafter referred to as "the cell,” is a complex multi-variable system, which […]  

(Outlines the problem) Therefore, it is desirable for an accurate AlF3 addition to be determined using a scientific 

strategy. 

These problems have attracted the attention of  researchers. There are three types of  research on MDAAA, 

all of  which mainly focus on controlling the AlF3 concentration. [ . . . ] (Explains the pluses and minuses of  the three 

types of  research)

Existing research on MDAAA mainly focuses on data-driven or knowledge-driven methods alone. However, 

data-driven methods may fail to cover the complex characteristics of  the cell, and knowledge-driven methods 

may be overly subjective. [ . . . ] (Explains the practical solution)

In this study, a data and knowledge collaboration strategy for MDAAA is proposed, combined with 

experiential knowledge from experts and data from the aluminum reduction process. The available data is used 

to extract meaningful fuzzy rules based on fuzzy decision trees and the clustering method, and is also used to 

detect the edge strength using the state transition algorithm (STA). The initial structure of  MDAAA provided 

by experts is amended using the above fuzzy rules. The problem of  having to rely on authoritative experts for 

FCMs modeling can then be alleviated. The accuracy of  MDAAA modeling based on FCMs is sensitive to the 

edge strength [29], which can be relaxed by detecting strength using the STA. Based on the augmented FCMs, 

the AFA can be obtained by removing the normalization of  the concepts. To the best of  our knowledge, this is 

the first time that a collaboration model that simultaneously integrates expert knowledge with production data 

is used for MDAAA based on augmented FCMs. In this study, the validity of  the proposed strategy is verified.

4. Experimental approach

Source: Weichao Yue, Weihua Gui, Xiaofang Chen, Zhaohui Zeng, Yongfang Xie. A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount of Aluminum 

Fluoride Addition Based on Augmented Fuzzy Cognitive Maps[J].Engineering,2019,5(6):1060-1076. Open Access under CC-BY-NC-ND-4.0

Summarizes
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approach
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passive voice
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The aluminum reduction cell, hereafter referred to as "the cell,” is a complex multi-variable system, which […]  

(Outlines the problem) Therefore, it is desirable for an accurate AlF3 addition to be determined using a scientific 

strategy. 

These problems have attracted the attention of  researchers. There are three types of  research on MDAAA, 

all of  which mainly focus on controlling the AlF3 concentration. [ . . . ] (Explains the pluses and minuses of  the three 

types of  research)

Existing research on MDAAA mainly focuses on data-driven or knowledge-driven methods alone. However, 

data-driven methods may fail to cover the complex characteristics of  the cell, and knowledge-driven methods 

may be overly subjective. [ . . .] (Explains the practical solution)

In this study, a data and knowledge collaboration strategy for MDAAA is proposed, combined with 

experiential knowledge from experts and data from the aluminum reduction process. The available data is used 

to extract meaningful fuzzy rules based on fuzzy decision trees and the clustering method, and is also used to 

detect the edge strength using the state transition algorithm (STA). The initial structure of  MDAAA provided 

by experts is amended using the above fuzzy rules. The problem of  having to rely on authoritative experts for 

FCMs modeling can then be alleviated. The accuracy of  MDAAA modeling based on FCMs is sensitive to the 

edge strength [29], which can be relaxed by detecting strength using the STA. Based on the augmented FCMs, 

the AFA can be obtained by removing the normalization of  the concepts. To the best of  our knowledge, this is 

the first time that a collaboration model that simultaneously integrates expert knowledge with production data 

is used for MDAAA based on augmented FCMs. In this study, the validity of  the proposed strategy is verified.

4. Experimental approach

Source: Weichao Yue, Weihua Gui, Xiaofang Chen, Zhaohui Zeng, Yongfang Xie. A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount of Aluminum 

Fluoride Addition Based on Augmented Fuzzy Cognitive Maps[J].Engineering,2019,5(6):1060-1076. Open Access under CC-BY-NC-ND-4.0

Signals
significance

(optional)



5. Closing off



5. Closing off
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Variations 

• Outlining the rest of the paper

• Outlining purposes

• Announcing principal findings

• Stating the value of the present research

• Listing research questions and hypotheses

Image: CC-BY-0
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In this study, a data and knowledge collaboration strategy for MDAAA is proposed, combined with 
experiential knowledge from experts and data from the aluminum reduction process. The available data 
is used to extract meaningful fuzzy rules based on fuzzy decision trees and the clustering method, and 
is also used to detect the edge strength using the state transition algorithm (STA). The initial structure 
of  MDAAA provided by experts is amended using the above fuzzy rules. The problem of  having to 
rely on authoritative experts for FCMs modeling can then be alleviated. The accuracy of  MDAAA 
modeling based on FCMs is sensitive to the edge strength [29], which can be relaxed by detecting 
strength using the STA. Based on the augmented FCMs, the AFA can be obtained by removing the 
normalization of  the concepts. To the best of  our knowledge, this is the first time that a collaboration 
model that simultaneously integrates expert knowledge with production data is used for MDAAA 
based on augmented FCMs. In this study, the validity of  the proposed strategy is verified.

The outline of  this paper is as follows. Section 2 analyzes the role and evolution of  AlF3, and 
describes the difficulties of  and solutions to MDAAA. Section 3 provides the details of  fuzzy decision 
trees and extended fuzzy -means (EFKM), which are used to extract fuzzy rules. The STA is then 
introduced to detect strength. Section 4 describes the initial structure design and the learning problem. 
Section 5 models the MDAAA based on augmented FCMs, verifies the effectiveness of  the proposed 
strategy, and provides the discussion. The last section gives the conclusions.     

5. Closing off

Source: Weichao Yue, Weihua Gui, Xiaofang Chen, Zhaohui Zeng, Yongfang Xie.. A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount 

of Aluminum Fluoride Addition Based on Augmented Fuzzy Cognitive Maps[J].Engineering,2019,5(6):1060-1076. Open Access under CC-BY-NC-ND-4.0
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In this study, a data and knowledge collaboration strategy for MDAAA is proposed, combined with 
experiential knowledge from experts and data from the aluminum reduction process. The available data 
is used to extract meaningful fuzzy rules based on fuzzy decision trees and the clustering method, and 
is also used to detect the edge strength using the state transition algorithm (STA). The initial structure 
of  MDAAA provided by experts is amended using the above fuzzy rules. The problem of  having to 
rely on authoritative experts for FCMs modeling can then be alleviated. The accuracy of  MDAAA 
modeling based on FCMs is sensitive to the edge strength [29], which can be relaxed by detecting 
strength using the STA. Based on the augmented FCMs, the AFA can be obtained by removing the 
normalization of  the concepts. To the best of  our knowledge, this is the first time that a collaboration 
model that simultaneously integrates expert knowledge with production data is used for MDAAA 
based on augmented FCMs. In this study, the validity of  the proposed strategy is verified.

The outline of  this paper is as follows. Section 2 analyzes the role and evolution of  AlF3, and 

describes the difficulties of  and solutions to MDAAA. Section 3 provides the details of  fuzzy decision 

trees and extended fuzzy -means (EFKM), which are used to extract fuzzy rules. The STA is then 

introduced to detect strength. Section 4 describes the initial structure design and the learning problem.

Section 5 models the MDAAA based on augmented FCMs, verifies the effectiveness of  the proposed 

strategy, and provides the discussion. The last section gives the conclusions.     

5. Closing off

Source: Weichao Yue, Weihua Gui, Xiaofang Chen, Zhaohui Zeng, Yongfang Xie.. A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount 

of Aluminum Fluoride Addition Based on Augmented Fuzzy Cognitive Maps[J].Engineering,2019,5(6):1060-1076. Open Access under CC-BY-NC-ND-4.0
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Design of  high-efficiency and high-performance electrical machine requires accurate prediction of  

resistive winding losses. These losses can be divided into skin- and proximity effects, and circulating 

currents. The latter can be especially significant and dominate in random-wound machines with stranded 

windings and a high-supply frequency, such as high-speed machines and multipole permanent magnet 

machines. Indeed, resistive loss increases of  several tens of  per cent have been observed [1, 2].

Due to manufacture reasons, the positions of  the strands in a random-wound winding cannot be 

exactly known or controlled. In other words, their positions can be regarded as uncertain. Furthermore, 

they can vary significantly from slot to slot and machine to machine. Correspondingly, also the 

circulating current losses often exhibit significant variance, even between nominally identical machines 

[3]. As such, the losses are also stochastic in nature.

This paper extends the authors' previous work in [3] for uncertainty quantification of  the circulating 

current losses. First, an equivalent circuit approach for modelling stranded windings is briefly recounted. 

Next, a phenomenological sampling algorithm is proposed for modelling the uncertainty in the winding. 

This algorithm is then coupled to the circuit model. Finally, the statistical properties of  the resistive 

losses are then estimated with Monte Carlo analysis and compared to measurement data.

Lehikoinen, A., Chiodetto, N., Arkkio, A., & Belahcen, A. (2019). Improved sampling algorithm for stochastic modelling of random-wound electrical machines. The Journal of Engineering, 

(17), 3976-3980. https://doi.org/10.1049/joe.2018.8093 CC-BY-4.0
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Here, we address the fundamental principles that organize the human feeling states (SI Appendix, 
Fig. S1). We asked (i) how humans organize their feeling states, (ii) what kind of  mental experiences 
and bodily sensations would best explain the representational structure of  the feelings, and (iii) whether 
the mental experiences and bodily sensations are associated with distinct neural activation patterns. We 
focused on mapping the basic dimensions (Experiment 1), ontology (Experiment 2), as well as bodily 
(Experiment 3) and neural (meta-analysis and synthesis of  Experiments 1–3) basis of  a broad array of  
feeling states (SI Appendix, Fig. S2 and Table S1). We first quantified the relative intensities of  four 
hypothesized core subjective dimensions (intensity of  bodily sensations, saliency of  mental experience, 
emotional valence, and agency) of  100 common subjective feelings spanning from homeostatic (e.g., 
hunger) and emotional (e.g., pleasure) states to cognitive functions (e.g., recalling). We also measured 
the relative frequency of  experiencing each feeling as the lapse since the last remembered occurrence 
of  each feeling. Next, we measured the experienced similarity of  these subjective feelings and mapped 
the topography of  bodily sensations associated with each feeling. Neural activation patterns associated 
with each state were derived using large-scale meta-analysis of  fMRI data. We quantified the spatial 
representations of  these states and linked the representational organization of  the subjective states with 
their bodily and neural activation patterns. We show that subjective mental states are embodied and 
emotionally valenced, and that there is a clear correspondence between the mental experiences and 
their bodily basis that also pertains to the underlying neural activation patterns in the bodily domain.

5. Closing off

Source: Nummenmaa L, Hari R, Hietanen JK, Glerean E. Maps of subjective feelings. Proc Natl Acad Sci U S A. 2018;115(37):9198-9203. doi:10.1073/pnas.1807390115 CC-BY-4.0

Announces

principal

findings



5. Closing off
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What else?



Avoid common problems

Excessive length Introduction is too long

Context/background 

too narrow

Readers not inspired to read

Overview sentences Sentences that don’t contribute to the meaning

Missing parts Gap (unknown) – Most commonly missing; implied > not stated

Obscured parts Parts not properly signaled with language that guides the reader

What else?
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Make the five parts clear to the 

reader

What else?
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Get help with signaling at 

http://www.phrasebank.manch

ester.ac.uk/introducing-work

What else?
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http://www.phrasebank.manchester.ac.uk/introducing-work


Checklist

Keep it short

Apply a general to specific pattern 

Include five parts: background, unknown, purpose, approach, closing

Use language to signal the five parts ( see the academic phrasebank) 

Cite the key literature (not a complete literature review)

Eliminate overview sentences (that don’t contribute to the meaning)

Write for a range of disciplinary readers, not for examiners!

Check journal guidelines

Signal the importance of the topic

Use negative (standard) phraseology to signal the gap (the unknown)
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