Writing an abstract: For a research article

Disclaimer

This slide set from the video is intended to support your learning after watching the video. Note that the slides don't contain all the explanations in the accompanying video.

Writing an abstract

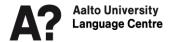
For a research article

Diane Pilkinton-Pihko, Ph.D.

The challenge

- In a clear, efficient style
- Within a limited space
- Convey the purpose, general experimental design, and conclusions
- Plus, if possible, explain the significance of the work
- Not merely copy and paste sentences from the article that result in a dull, meaningless list

3


Research paper abstracts as a tool for success	
Getting read	A screening device for convincing scholars to read your research
Connecting with editors	Who use the abstract to encourage potential reviewers to review your research
Being discovered	From a database, where scholars find your abstract via embedded key words and proper nouns that may not appear in your title
Getting cited	Scholars may cite your work based on reading your abstract
Solving problems	Writing an abstract helps you to clarify your research Can't write an abstract > then your research lacks focus

Five potential parts An approach to writing abstracts Examples

Language tips

5

Five potential parts

Five potential parts

2. Purpose

3. Methods/materials/subjects/procedure

4. Results/findings/product

5. Conclusion/discussion/implication/recommendation

7

Five potential parts

1. Background/problematization Establish research context and relevance


2. Purpose Intention, thesis, purpose, goal, or hypothesis

3. Methods/materials/subjects/procedure Kind and treatment of data; procedure, scope and limits

4. Results/findings/product Indicate your findings and summarize your results

5. Conclusion/discussion/implication/recommendation Draw inferences; state implications or recommendations

8

An approach to writing abstracts

Structure	Use questions to guide your writing
1. Background Context and relevance Length: 1-2 sentences	What is known about the topic?Why is the topic important?
2. Purpose Intent, thesis, purpose, goal, or hypothesis Length: 1-2 sentences	 Why was this study done? What motivated the study? How does this goal differ from others?
3. Methods/materials/subjects/procedure Kind and treatment of data; scope and limits Length will vary	 What was done and how? What was the methodology or experimental design? What limits were imposed?
4. Results Indicate findings; summarize results Length: Comprises the bulk of the abstract	What did you find?What was achieved?
5. Conclusion/discussion/ implication/recommendation Draw inferences; state implications or recommendations Length: 1-2 sentences	 What do the findings mean? What is the value of your findings? What may be concluded? How do your findings apply to a broader context?

- Gets better results!
- Eliminates copying sentences from your paper!

Common problems to avoid

- Parts imbalanced
- Results too brief or missing
- No implications of the findings
- Excessive length

Write it as a stand alone!

The abstract can be understood independently in a database

Examples

5 Potential Parts Metalanguage

Three-dimensional (3D) printing of biomaterials has the potential to become an ecologically advantageous alternative compared with conventional manufacturing based on oil-derived polymer materials. In this study, a novel 3D printing technology is applied that combines ultraviolet (UV) curing with paste extrusion. This hybrid manufacturing technique enables the fabrication of complex geometries from high filler-ratio pastes. The developed biocomposite aims for suitable mechanical properties in terms of tensile and compressive strength. It is composed of acrylic acid, cellulose acetate, a-cellulose, and fumed silica with a cellulose ratio of more than 25 vol-%. The material is extruded with an in-housedeveloped 3D printer equipped with a 12 W UV light curing source, which enables concurrent curing and extrusion. Two different UV-curing strategies were tested: postcuring without concurrent curing and postcuring with concurrent curing. The total UV-curing duration was kept constant with all samples. Tensile testing in accordance with ASTM standard D638-14 Type 4, compression testing according to ASTM D695-15, and overhang tests were conducted. As a result, samples without notable shrinkage, suitable tensile strength (up to 17.72MPa), competitive compression testing parameters (up to 19.73MPa), and an enhanced overhang angle (increase of more than 25) were produced, leading to new applications and more freedom in design due to higher possible unsupported overhangs when using UV-curing during the print. Overall, constant UV light radiation during the print leads to improved mechanical properties due to the possibility of bypassing the UV-penetration depth constraint. It should be considered when extruding photopolymer-based composites, especially for large and complex components with a low degree of translucency. 15

Three-dimensional (3D) printing of biomaterials has the potential to become an ecologically advantageous alternative compared with conventional manufacturing based on oil-derived polymer Background materials. In this study, a novel 3D printing technology is applied that combines ultraviolet (UV) curing with paste extrusion. This hybrid manufacturing technique enables the fabrication of complex geometries from high filler-ratio pastes. The developed biocomposite aims for suitable mechanical properties in terms of tensile and compressive strength. It is composed of acrylic acid, cellulose acetate, a-cellulose, and fumed silica with a cellulose ratio of more than 25 vol-%. The material is extruded with an in-housedeveloped 3D printer equipped with a 12 W UV light curing source, which enables concurrent curing and extrusion. Two different UV-curing strategies were tested: postcuring without concurrent curing and postcuring with concurrent curing. The total UV-curing duration was kept constant with all samples. Tensile testing in accordance with ASTM standard D638-14 Type 4, compression testing according to ASTM D695-15, and overhang tests were conducted. As a result, samples without notable shrinkage, suitable tensile strength (up to 17.72MPa), competitive compression testing parameters (up to 19.73MPa), and an enhanced overhang angle (increase of more than 25) were produced, leading to new applications and more freedom in design due to higher possible unsupported overhangs when using UV-curing during the print. Overall, constant UV light radiation during the print leads to improved mechanical properties due to the possibility of bypassing the UV-penetration depth constraint. It should be considered when extruding photopolymer-based composites, especially for large and complex components with a low degree of translucency. 16

Three-dimensional (3D) printing of biomaterials has the potential to become an ecologically advantageous alternative compared with conventional manufacturing based on oil-derived polymer Background materials. In this study, a novel 3D printing technology is applied that combines ultraviolet (UV) curing with paste extrusion. This hybrid manufacturing technique enables the fabrication of complex geometries Method from high filler-ratio pastes. The developed biocomposite aims for suitable mechanical properties in terms of tensile and compressive strength. It is composed of acrylic acid, cellulose acetate, a-cellulose, and fumed silica with a cellulose ratio of more than 25 vol-%. The material is extruded with an in-housedeveloped 3D printer equipped with a 12 W UV light curing source, which enables concurrent curing and extrusion. Two different UV-curing strategies were tested: postcuring without concurrent curing and postcuring with concurrent curing. The total UV-curing duration was kept constant with all samples. Tensile testing in accordance with ASTM standard D638-14 Type 4, compression testing according to ASTM D695-15, and overhang tests were conducted. As a result, samples without notable shrinkage, suitable tensile strength (up to 17.72MPa), competitive compression testing parameters (up to 19.73MPa), and an enhanced overhang angle (increase of more than 25) were produced, leading to new applications and more freedom in design due to higher possible unsupported overhangs when using UV-curing during the print. Overall, constant UV light radiation during the print leads to improved mechanical properties due to the possibility of bypassing the UV-penetration depth constraint. It should be considered when extruding photopolymer-based composites, especially for large and complex components with a low degree of translucency.

17

Text source: Kretzschmar, N., Lipponen, S., Klar, V., Pearce, J. M., Ranger, T. L., Seppälä, J., & Partanen, J. (2019). Mechanical properties of ultraviolet-assisted paste extrusion and postextrusion ultraviolet-curing of threedimensional printed biocomposites. 3D Printing and Additive Manufacturing, 6(3), 127-137. https://doi.org/10.1089/3dp.2018.0148. Licensed under CC-BY-4.0

Three-dimensional (3D) printing of biomaterials has the potential to become an ecologically advantageous alternative compared with conventional manufacturing based on oil-derived polymer Background materials. In this study, a novel 3D printing technology is applied that combines ultraviolet (UV) curing with paste extrusion. This hybrid manufacturing technique enables the fabrication of complex geometries Method from high filler-ratio pastes. The developed biocomposite aims for suitable mechanical properties in terms Purpose of tensile and compressive strength. It is composed of acrylic acid, cellulose acetate, a-cellulose, and fumed silica with a cellulose ratio of more than 25 vol-%. The material is extruded with an in-housedeveloped 3D printer equipped with a 12 W UV light curing source, which enables concurrent curing and extrusion. Two different UV-curing strategies were tested: postcuring without concurrent curing and postcuring with concurrent curing. The total UV-curing duration was kept constant with all samples. Tensile testing in accordance with ASTM standard D638-14 Type 4, compression testing according to ASTM D695-15, and overhang tests were conducted. As a result, samples without notable shrinkage, suitable tensile strength (up to 17.72MPa), competitive compression testing parameters (up to 19.73MPa), and an enhanced overhang angle (increase of more than 25) were produced, leading to new applications and more freedom in design due to higher possible unsupported overhangs when using UV-curing during the print. Overall, constant UV light radiation during the print leads to improved mechanical properties due to the possibility of bypassing the UV-penetration depth constraint. It should be considered when extruding photopolymer-based composites, especially for large and complex components with a low degree of translucency. 18

Text source: Kretzschmar, N., Lipponen, S., Klar, V., Pearce, J. M., Ranger, T. L., Seppälä, J., & Partanen, J. (2019). Mechanical properties of ultraviolet-assisted paste extrusion and postextrusion ultraviolet-curing of threedimensional printed biocomposites. 3D Printing and Additive Manufacturing, 6(3), 127-137. https://doi.org/10.1089/3dp.2018.0148. Licensed under CC-BY-4.0

	Three-dimensional (3D) printing of biomaterials has the potential to become an ecologically
Background	advantageous alternative compared with conventional manufacturing based on oil-derived polymer
0	materials. In this study, a novel 3D printing technology is applied that combines ultraviolet (UV) curing
Method	with paste extrusion. This hybrid manufacturing technique enables the fabrication of complex geometries
Purpose	from high filler-ratio pastes. The developed biocomposite aims for suitable mechanical properties in terms
	of tensile and compressive strength. It is composed of acrylic acid, cellulose acetate, a-cellulose, and
	fumed silica with a cellulose ratio of more than 25 vol-%. The material is extruded with an in-house-
Materials & Procedure	developed 3D printer equipped with a 12 W UV light curing source, which enables concurrent curing and
	extrusion. Two different UV-curing strategies were tested: postcuring without concurrent curing and
	postcuring with concurrent curing. The total UV-curing duration was kept constant with all samples.
	Tensile testing in accordance with ASTM standard D638-14 Type 4, compression testing according to
	ASTM D695-15, and overhang tests were conducted. As a result, samples without notable shrinkage,
	suitable tensile strength (up to 17.72MPa), competitive compression testing parameters (up to 19.73MPa),
	and an enhanced overhang angle (increase of more than 25) were produced, leading to new applications
	and more freedom in design due to higher possible unsupported overhangs when using UV-curing during
	the print. Overall, constant UV light radiation during the print leads to improved mechanical properties
	due to the possibility of bypassing the UV-penetration depth constraint. It should be considered when
	extruding photopolymer-based composites, especially for large and complex components with a low
	degree of translucency.

	Three-dimensional (3D) printing of biomaterials has the potential to become an ecologically
Background	advantageous alternative compared with conventional manufacturing based on oil-derived polymer
	materials. In this study, a novel 3D printing technology is applied that combines ultraviolet (UV) curing
Method	with paste extrusion. This hybrid manufacturing technique enables the fabrication of complex geometries
Purpose	from high filler-ratio pastes. The developed biocomposite aims for suitable mechanical properties in terms
	of tensile and compressive strength. It is composed of acrylic acid, cellulose acetate, a-cellulose, and
	fumed silica with a cellulose ratio of more than 25 vol-%. The material is extruded with an in-house-
Materials & Procedure	developed 3D printer equipped with a 12 W UV light curing source, which enables concurrent curing and
	extrusion. Two different UV-curing strategies were tested: postcuring without concurrent curing and
	postcuring with concurrent curing. The total UV-curing duration was kept constant with all samples.
	Tensile testing in accordance with ASTM standard D638-14 Type 4, compression testing according to
	ASTM D695-15, and overhang tests were conducted. As a result, samples without notable shrinkage,
	suitable tensile strength (up to 17.72MPa), competitive compression testing parameters (up to 19.73MPa),
Results	and an enhanced overhang angle (increase of more than 25) were produced, leading to new applications
	and more freedom in design due to higher possible unsupported overhangs when using UV-curing during
	the print. Overall, constant UV light radiation during the print leads to improved mechanical properties
	due to the possibility of bypassing the UV-penetration depth constraint. It should be considered when
	extruding photopolymer-based composites, especially for large and complex components with a low
	degree of translucency. 20

	Three-dimensional (3D) printing of biomaterials has the potential to become an ecologically
Background	advantageous alternative compared with conventional manufacturing based on oil-derived polymer
	materials. In this study, a novel 3D printing technology is applied that combines ultraviolet (UV) curing
Method	with paste extrusion. This hybrid manufacturing technique enables the fabrication of complex geometries
Purpose	from high filler-ratio pastes. The developed biocomposite aims for suitable mechanical properties in terms
	of tensile and compressive strength. It is composed of acrylic acid, cellulose acetate, a-cellulose, and
	fumed silica with a cellulose ratio of more than 25 vol-%. The material is extruded with an in-house-
Materials & Procedure	developed 3D printer equipped with a 12 W UV light curing source, which enables concurrent curing and
	extrusion. Two different UV-curing strategies were tested: postcuring without concurrent curing and
	postcuring with concurrent curing. The total UV-curing duration was kept constant with all samples.
	Tensile testing in accordance with ASTM standard D638-14 Type 4, compression testing according to
	ASTM D695-15, and overhang tests were conducted. As a result, samples without notable shrinkage,
	suitable tensile strength (up to 17.72MPa), competitive compression testing parameters (up to 19.73MPa),
Results	and an enhanced overhang angle (increase of more than 25) were produced, leading to new applications
Recento	and more freedom in design due to higher possible unsupported overhangs when using UV-curing during
	the print. Overall, constant UV light radiation during the print leads to improved mechanical properties
Conclusion	due to the possibility of bypassing the UV-penetration depth constraint. It should be considered when
	extruding photopolymer-based composites, especially for large and complex components with a low
	degree of translucency.
	Text source: Kretzschmar, N., Lipponen, S., Klar, V., Pearce, J. M., Ranger, T. L., Seppälä, J., & Partanen, J. (2019). Mechanical properties of ultraviolet-assisted paste extrusion and postextrus

During joint actions, people typically adjust their own actions according to the ongoing actions of the partner, which implies that the interaction modulates the behavior of both participants. However, the neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as 8 pairs performed continuous, repetitive right-hand opening and closing actions with ~3-s cycles in a leader-follower task. Subjects played each role for 5min.Magnetoencephalographic (MEG) brain signals were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands. Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders; these oscillations originated, according to beamformer source reconstructions, in early visual cortices. Despite differences in the modulation indices, alpha and beta power did not differ between the conditions. Our results indicate that the beta modulation in the early visual cortices depends on the subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different strategies employed by leaders and followers in integrating kinematics-related visual information to control their own actions.

During joint actions, people typically adjust their own actions according to the ongoing actions of the partner, which implies that the interaction modulates the behavior of both participants. However, the Background neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as 8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles in a leader-follower task. Subjects played each role for 5min.Magnetoencephalographic (MEG) brain signals were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands. Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders; these oscillations originated, according to beamformer source reconstructions, in early visual cortices. Despite differences in the modulation indices, alpha and beta power did not differ between the conditions. Our results indicate that the beta modulation in the early visual cortices depends on the subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different strategies employed by leaders and followers in integrating kinematics-related visual information to control their own actions.

During joint actions, people typically adjust their own actions according to the ongoing actions of the partner, which implies that the interaction modulates the behavior of both participants. However, the Background neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as Purpose 8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles in a leader-follower task. Subjects played each role for 5min.Magnetoencephalographic (MEG) brain signals were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands. Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders; these oscillations originated, according to beamformer source reconstructions, in early visual cortices. Despite differences in the modulation indices, alpha and beta power did not differ between the conditions. Our results indicate that the beta modulation in the early visual cortices depends on the subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different strategies employed by leaders and followers in integrating kinematics-related visual information to control their own actions.

	During joint actions, people typically adjust their own actions according to the ongoing actions of the
Background	partner, which implies that the interaction modulates the behavior of both participants. However, the
	neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the
Purpose	kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as
	8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles in a
Subjects materials, procedure	leader–follower <mark>task</mark> . <mark>Subjects</mark> played each role for 5 min. Magnetoencephalographic (MEG) brain signals
	were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was
	monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed
	between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands.
	Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the
	sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders;
	these oscillations originated, according to beamformer source reconstructions, in early visual cortices.
	Despite differences in the modulation indices, alpha and beta power did not differ between the
	conditions. Our results indicate that the beta modulation in the early visual cortices depends on the
	subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different
	strategies employed by leaders and followers in integrating kinematics-related visual information to
	control their own actions.

	During joint actions, people typically adjust their own actions according to the ongoing actions of the
Background	partner, which implies that the interaction modulates the behavior of both participants. However, the
	neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the
Purpose	kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as
Subjects, materials, procedure	8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles in a
	leader–follower task. Subjects played each role for 5 min. Magnetoencephalographic (MEG) brain signals
	were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was
	monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed
	between the hand acceleration and the MEG signals in the alpha (7-13 Hz) and beta (13-25 Hz) bands.
	Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the
Results	sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders;
Results	these oscillations originated, according to beamformer source reconstructions, in early visual cortices.
	Despite differences in the modulation indices, alpha and beta power did not differ between the
	conditions. Our results indicate that the beta modulation in the early visual cortices depends on the
	subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different
	strategies employed by leaders and followers in integrating kinematics-related visual information to
	control their own actions.

Background	During joint actions, people typically adjust their own actions according to the ongoing actions of the
	partner, which implies that the interaction modulates the behavior of both participants. However, the
	neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the
Purpose	kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as
Subjects, materials, procedure	8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles in a
	leader–follower task. Subjects played each role for 5 min. Magnetoencephalographic (MEG) brain signals
	were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was
	monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed
	between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands.
Results	Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the
	sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders;
	these oscillations originated, according to beamformer source reconstructions, in early visual cortices.
	Despite differences in the modulation indices, alpha and beta power did not differ between the
	conditions. Our results indicate that the beta modulation in the early visual cortices depends on the
	subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different
	strategies employed by leaders and followers in integrating kinematics-related visual information to
	control their own actions.

5 Potential Parts Metalanguage

The combined effect of dissolved ions and water temperature on the adsorption of a xanthate collector on chalcopyrite and pentlandite was investigated using multiple linear regression. Cationic species improved the adsorption of the collector on sulphide minerals through xanthate adsorption activation. Thiosulphate ions generally had a negative effect on collector adsorption, and the interaction of thiosulphate ions and cations effectively reduced collector adsorption on the sulphide minerals. With regards to temperature variation caused by seasonal variation, this study suggests that temperature can influence the adsorption of collectors in the flotation process and this should be approached on a case by case basis as it seems to differ with the type of mineral under investigation. These fundamental results prompt a discussion on how complex water matrices can affect interactions of reagents and sulphide minerals at the solid–liquid interface and the possible effect on flotation performance.

Text source: Mhonde, N., Schreithofer, N., Corin, K., & Mäkelä, M. (2020). Assessing the combined effect of water temperature and complex water matrices on xanthate adsorption using multiple linear regression. *Minerals*, 10(9), 1-18. [733]. https://doi.org/10.3390/min10090733. CC-BY-4.0

Purpose & Method

The combined effect of dissolved ions and water temperature on the adsorption of a xanthate collector on chalcopyrite and pentlandite was investigated using multiple linear regression. Cationic species improved the adsorption of the collector on sulphide minerals through xanthate adsorption activation. Thiosulphate ions generally had a negative effect on collector adsorption, and the interaction of thiosulphate ions and cations effectively reduced collector adsorption on the sulphide minerals. With regards to temperature variation caused by seasonal variation, this study suggests that temperature can influence the adsorption of collectors in the flotation process and this should be approached on a case by case basis as it seems to differ with the type of mineral under investigation. These fundamental results prompt a discussion on how complex water matrices can affect interactions of reagents and sulphide minerals at the solid–liquid interface and the possible effect on flotation performance.

Text source: Mhonde, N., Schreithofer, N., Corin, K., & Mäkelä, M. (2020). Assessing the combined effect of water temperature and complex water matrices on xanthate adsorption using multiple linear regression. *Minerals*, 10(9), 1-18. [733]. https://doi.org/10.3390/min10090733. CC-BY-4.0

The combined effect of dissolved ions and water temperature on the adsorption of a xanthate collector on chalcopyrite and pentlandite was investigated using Purpose & multiple linear regression. Cationic species improved the adsorption of the Method collector on sulphide minerals through xanthate adsorption activation. Thiosulphate ions generally had a negative effect on collector adsorption, and the interaction of thiosulphate ions and cations effectively reduced collector Results adsorption on the sulphide minerals. With regards to temperature variation caused by seasonal variation, this study suggests that temperature can influence the adsorption of collectors in the flotation process and this should be approached on a case by case basis as it seems to differ with the type of mineral under investigation. These fundamental results prompt a discussion on how complex water matrices can affect interactions of reagents and sulphide minerals at the solid–liquid interface and the possible effect on flotation performance.

Aalto University Language Centre

Text source: Mhonde, N., Schreithofer, N., Corin, K., & Mäkelä, M. (2020). Assessing the combined effect of water temperature and complex water matrices on xanthate adsorption using multiple linear regression. *Minerals*, 10(9), 1-18. [733]. https://doi.org/10.3390/min10090733. CC-BY-4.0

The combined effect of dissolved ions and water temperature on the adsorption of a xanthate collector on chalcopyrite and pentlandite was investigated using Purpose & multiple linear regression. Cationic species improved the adsorption of the Method collector on sulphide minerals through xanthate adsorption activation. Thiosulphate ions generally had a negative effect on collector adsorption, and the interaction of thiosulphate ions and cations effectively reduced collector Results adsorption on the sulphide minerals. With regards to temperature variation caused by seasonal variation, this study suggests that temperature can influence the adsorption of collectors in the flotation process and this should be approached on a case by case basis as it seems to differ with the type of mineral under investigation. These fundamental results prompt a discussion on how complex water matrices can affect interactions of reagents and sulphide minerals at the Conclusion solid-liquid interface and the possible effect on flotation performance.

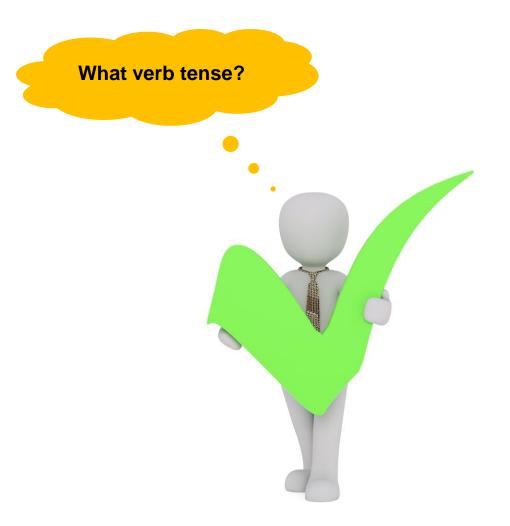
Y Text source: Mhonde, N., Schreithofer, N., Corin, K., & Mäkelä, M. (2020). Assessing the combined effect of water temperature and complex water matrices on xanthate adsorption using multiple linear regression. *Minerals*, 10(9), 1-18. [733]. https://doi.org/10.3390/min10090733. CC-BY-4.0

Language tips

Use language signals

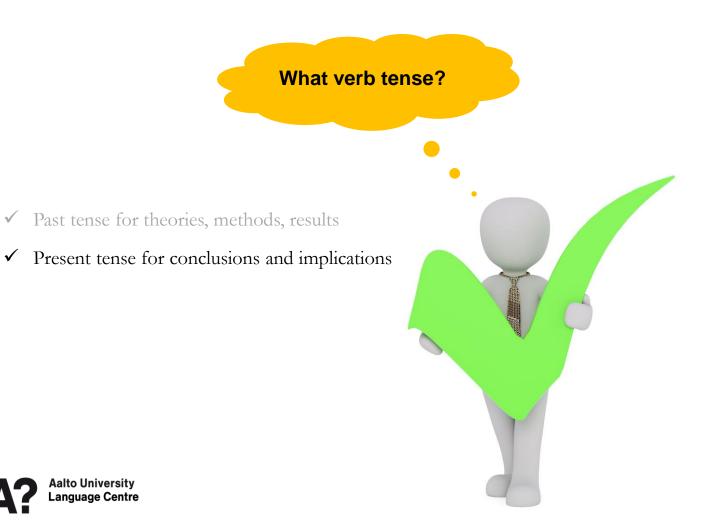
- This study introduces/proposes/identifies/explores/...
- As a result, ...
- The findings suggest/imply ...
- Overall, [signal the conclusion]

A few language tips



Aalto University Language Centre A few language tips

Aalto University Language Centre



 \checkmark

5 Potential Parts Metalanguage Verb tense: past

	During joint actions, people typically adjust their own actions according to the ongoing actions of the		
Background	partner, which implies that the interaction modulates the behavior of both participants. However, the		
	neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the		
Purpose	kinematics-related brain activity of leaders and followers performing hand actions Sixteen participants as		
Subjects & Procedure	8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles in a		
	leader–follower task. Subjects <mark>played</mark> each role for 5 min. Magnetoencephalographic (MEG) brain signals		
	were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was		
	monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed		
	between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands.		
Results	Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the		
	sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders;		
	these oscillations originated, according to beamformer source reconstructions, in early visual cortices.		
	Despite differences in the modulation indices, alpha and beta power did not differ between the		
Conclusions	conditions. Our results indicate that the beta modulation in the early visual cortices depends on the		
	subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different		
	strategies employed by leaders and followers in integrating kinematics-related visual information to		
	control their own actions.		

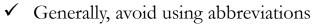
 \checkmark

5 Potential Parts Metalanguage Verb tense: present

During joint actions, people typically adjust their own actions according to the ongoing actions of the Background partner, which implies that the interaction modulates the behavior of both participants. However, the neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as Purpose 8 pairs performed continuous, repetitive right-hand opening and closing actions with ~3-s cycles in a leader-follower task. Subjects played each role for 5 min. Magnetoencephalographic (MEG) brain signals Subjects & Procedure were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands. Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders; Results these oscillations originated, according to beamformer source reconstructions, in early visual cortices. Despite differences in the modulation indices, alpha and beta power did not differ between the conditions. Our results indicate that the beta modulation in the early visual cortices depends on the subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different Conclusion strategies employed by leaders and followers in integrating kinematics-related visual information to control their own actions.

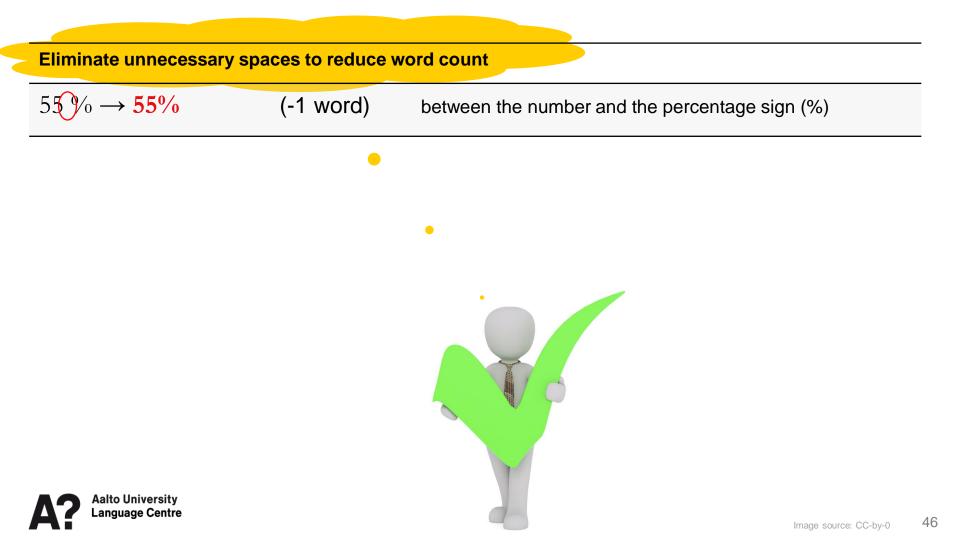
In abstracts, is it ok to use I and We?

- ✓ Generally, I and we are preferred to passive voice
- ✓ But, check the instructions to authors for your target journal


5 Potential Parts Metalanguage Verb tense: present Pronoun: I, we

Background partner, which implies that the interaction modulates the behavior of both participants. However	, the		
neural substrates of such mutual adaptation are still poorly understood. Here, we set out to ident	fy the		
Purpose kinematics-related brain activity of leaders and followers performing hand actions. Sixteen partic	kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as		
8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles	in a		
Subjects & leader-follower task. Subjects played each role for 5 min. Magnetoencephalographic (MEG) brai	n signals		
Procedure were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics w	vas		
monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was com	puted		
between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz)	bands.		
Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally	in the		
sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than lead	lers;		
these oscillations originated, according to beamformer source reconstructions, in early visual cort	ices.		
Despite differences in the modulation indices, alpha and beta power did not differ between the			
conditions. Our results indicate that the beta modulation in the early visual cortices depends on t	ne		
subject's role as a follower or leader in a joint hand-action task. This finding could reflect the diff	erent		
Conclusion strategies employed by leaders and followers in integrating kinematics-related visual information	O		
control their own actions.			

5 Potential Parts Metalanguage Verb tense: present Passive voice (low usage)


Background partner, which implies that the interaction modulates the behavior of both participants. However, the	
neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify t	e
Purpose kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participan	as
8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles in a	
Subjects & leader-follower task. Subjects played each role for 5 min. Magnetoencephalographic (MEG) brain sig	nals
Procedure were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was	
monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was compute	L
between the hand acceleration and the MEG signals in the alpha (7-13 Hz) and beta (13-25 Hz) ban	s.
Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in t	e
sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders.	
these oscillations originated, according to beamformer source reconstructions, in early visual cortices	
Despite differences in the modulation indices, alpha and beta power did not differ between the	
conditions. Our results indicate that the beta modulation in the early visual cortices depends on the	
subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different	
Conclusion strategies employed by leaders and followers in integrating kinematics-related visual information to	
control their own actions.	

5 Potential Pa	rts Metalanguage Verb tense: present Pronoun: I, we Abbreviations				
Background					
Purpose	neural substrates of such mutual adaptation are still poorly understood. Here, we set out to identify the kinematics-related brain activity of leaders and followers performing hand actions. Sixteen participants as				
	8 pairs performed continuous, repetitive right-hand opening and closing actions with \sim 3-s cycles in a				
Subjects & Procedure	leader–follower task. Subjects played each role for 5 min. Magnetoencephalographic (MEG) brain signals				
	were recorded simultaneously from both partners with a dual-MEG setup, and hand kinematics was				
	monitored with accelerometers. Modulation index, a cross-frequency coupling measure, was computed				
	between the hand acceleration and the MEG signals in the alpha (7–13 Hz) and beta (13–25 Hz) bands.				
	Regardless of the participants' role, the strongest alpha and beta modulations occurred bilaterally in the				
Results	sensorimotor cortices. In the occipital region, beta modulation was stronger in followers than leaders;				
i Cesuits	these oscillations originated, according to beamformer source reconstructions, in early visual cortices.				
	Despite differences in the modulation indices, alpha and beta power did not differ between the				
Conclusions	conditions. Our results indicate that the beta modulation in the early visual cortices depends on the				
	subject's role as a follower or leader in a joint hand-action task. This finding could reflect the different				
	strategies employed by leaders and followers in integrating kinematics-related visual information to				
	control their own actions.				

56

Eliminate unnecessary spaces to reduce word count					
(-1 word)	between the number and the percentage sign (%)				
(-2 words)	between (Greek) symbols or operators (<, >, \leq , \geq , =, \pm)				
	(-1 word)				

•

Eliminate unnecessary spaces to reduce word count					
$55\% \rightarrow 55\%$	(-1 word)	between the number and the percentage sign (%)			
R<0.01 → P<0.01	(-2 words)	between (Greek) symbols or operators (<, >, \leq , \geq , =, \pm)			
5 out of $10 \rightarrow 5/10$	(-3 words)	within numerical ranges and fractions			

Eliminate repetition of units to reduce word count

2 kg vs. 5 kg for the experimental and control groups, respectively

 $\rightarrow 2 \text{ vs. 5 kg}$ (-1 word)

Eliminate repetition of units to reduce word count

2 kg vs. 5 kg for the experimental and control groups, respectively

 $\rightarrow 2 \text{ vs. 5 kg}$ (-1 word)

Samples were collected at 0.5 h, 1 h, 2 h, 4 h, 8 h, and 16 h

 \rightarrow Samples were collected at 0.5, 1, 2, 4, 8, and 16 h (-5 words)

Research Paper Abstract: Checklist Include sufficient "parts" – generally 3 to 5 of the five potential parts Use the questions for guiding the writing of the abstract (on the previous slides) This helps prevent the temptation to copy sentences from the text Check that the parts of the abstract are balanced Abstract is understandable when independent of the research paper Why is this necessary? Abstracts often float in databases separately from the paper itself, and therefore cannot depend on it Use language signals (e.g. This study identifies; The findings suggest) Past tense for theories, methods and results; present tense for conclusions and implications Prounouns, I and We, preferred to passive voice > but check the journal's instructions to authors Use active verbs (as the preferred voice) Keep sentences relatively short Use key terms (useful in databases) and avoid abbreviations Eliminate unnecessary details

Thank you! f I b in.

aalto.fi

Special thanks: This video slide set was produced by Diane Pilkinton-Pihko as part of an Aalto University Online Learning (A!OLE) project. It is licensed under Creative Commons Attribution-NonCommercial 4.0 International

Film credits

Creative commons images under CC-BY-0

3D white male writing on a whiteboard

3D white male gesturing with right hand

3D white male with a green check mark

3D white male sitting on briefcase

Text sources licensed under CC-BY-NC-ND-4.0

Kretzschmar, N., Lipponen, S., Klar, V., Pearce, J. M., Ranger, T. L., Seppälä, J., & Partanen, J. (2019). Mechanical properties of ultraviolet-assisted paste extrusion and post extrusion ultraviolet-curing of three dimensional printed biocomposites. 3D Printing and Additive Manufacturing, 6(3), 127-137.https://doi.org/10.1089/3dp.2018.0148

Mhonde, N., Schreithofer, N., Corin, K., & Mäkelä, M. (2020). Assessing the combined effect of water temperature and complex water matrices on xanthate adsorption using multiple linear regression. *Minerals*, 10(9), 1-18. [733]. https://doi.org/10.3390/min10090733

Zhou, G., Bourguignon, M., Parkkonen, L., & Hari, R. (2016). Neural signatures of hand kinematics in leaders vs. followers: A dual-MEG study. NeuroImage, 125, 731-738. DOI: 10.1016/j.neuroimage.2015.11.002.

