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Machine learning basics  
 

There are several machine learning (ML) courses in Aalto so this 

lecture will not be very broad or deep.  

 
Almost all science is fitting models to datasets. Experiments are 

designed to collect data from which knowledge is extracted by using 

accepted theories. The experimental data is fitted to theories if they 

exist (natural science vs. human science).  

 
Now we can have a lot of data which is not connected to theories, like 

images, but there is some information in this data. How can we find 

information or correlations form vast data sets. Answer: Machine 

learning  

 
ML is used in many fields, like pharmaceutical industry and gene 

studies (bioinformatics), image and speech recognition, machine 

translation, etc..  

 
We meet the ML every day in applications like Apple Siri and in many 

net advertising sites.  
 

Huge amount of ML methods has been collected to a python library Scikit-

learn. This is a very convenient way to do ML computations.  

 
The sklearn is easy to use in python or in Jupyter notebooks 

 
import sklearn 
from sklearn.model_selection import KFold 
from sklearn.model_selection import GridSearchCV, train_test_split 
from sklearn.ensemble import GradientBoostingRegressor 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.kernel_ridge import KernelRidge 
import matplotlib.pyplot as plt 
 
 

Machine learning classes  

 
I used the https://www.ibm.com/cloud/learn/machine-learning web-page.  
 
Supervised learning (SL): The aim is to learn known outputs and find 

good descriptors for the system. This is the most relevant ML for 

materials science. This is also a relatively easy ML problem.  

 



 
 

 

Unsupervised learning (UL): The aim is to classify data and find 

patterns in it. Example: understanding hand-written text. This is more 

difficult and usually a lot of data is needed. Typically, the UL 

methods will cluster data with some similarity methods.  

 

 
 
Semi-supervised learning: A mixture of the two methods above. For 

example, in some cases the output is known. Example: we can know some 

of the hand-written letters. If the data set have 100 000 examples we 

know 300 of them and the machine need to learn rest of them.  

 

There are several ML methods, like neural networks, decision trees, 

regression algorithms. We came to them a bit later.  

 
Data quality is an important aspect. Is the data balanced, free of 

major errors, is there duplicated data, are there outliers, what is the 

“noise level” in the data, etc. These are usually difficult questions 

and hard to answer before the analysis. One still need to make sure 

that the data quality is as good as possible.  

 
How large the data set should be? As large as possible, but in 

materials science the data set are usually not very large. Data size of 

below 100 is challenging since all ML methods rely on statistic. 1000 

is OK and larger set are even better.   
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The quality of the data set can be tested by enlarging the data. Below 

blue is the training error and red is the test error. (The analysis is 

based in 10-fold cross validation, sorry of the low quality figure)  

 

 
 

Validation  
 
One of the main topic in ML is the method validation. To that end the 

original data set is divided to training and test set. The training set 

is used to teach the ML methods and the data in the test set is NOT use 

in the training. The test set size is typically 2-5 % of the data. The 

test set is chosen randomly to form the data. This procedure can be 

repeated on many data divisions. 



Cross validation: One can make the training/test data 

partitioning several times. This approach produces several ML 

models and test and in this way quality of the ML models can 

be tested better than on single data partitioning. 

 

 

  

 

 

 

 

 
 
Each data set will give different fit the model. With cross 

validation we can get statistic of the fit.  

 

One can also leave some data out of the cross validation data 

and use that as second level test set or publication set. The 

publication set is never used in training.  

 

 
 

 

 

 

 

 

 

(This wiki page is very good: 

https://en.wikipedia.org/wiki/Cross-validation_(statistics) )  
 

ML methods parameter optimising 
 

All ML methods contain parameter and they need to be optimized 

to ensure that the ML methods is working optimally. In sklearn 

the default parameters are quite good (if the data set is 

reasonably large). The teaching is simple if one is using 

GridSearchCV methods. There are more sophisticated methods. 

(for all this see the Sklearn manual, https://scikit-

learn.org/).  

 

model = RandomForestRegressor() 

parameters = {"n_estimators": range(20, 80, 10), "min_samples_split":[2,3]}       # for RF 

clf = GridSearchCV(model, parameters, cv = 10, verbose=2) 
 
output : score, parameters 
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-0.4466248626907848 {'min_samples_split': 3, 'n_estimators': 30} 

-0.45742261440125276 {'min_samples_split': 3, 'n_estimators': 50} 

-0.4587929994651951 {'min_samples_split': 3, 'n_estimators': 60} 

-0.4597841296896924 {'min_samples_split': 3, 'n_estimators': 40} 

-0.4648287622992993 {'min_samples_split': 2, 'n_estimators': 40} 

-0.4660148003169513 {'min_samples_split': 3, 'n_estimators': 70} 

-0.4662565949899477 {'min_samples_split': 2, 'n_estimators': 60} 

-0.4711060835686439 {'min_samples_split': 2, 'n_estimators': 50} 

 
or  
 
model = GradientBoostingRegressor() 
 
parameters = {'learning_rate': np.arange(0.05, 0.3, 0.05), "loss": ['ls', 'huber'],     
"n_estimators": range(20, 80, 10), 'subsample': [1.0, 0.9]} 
 
clf = GridSearchCV(model, parameters, cv = 10, verbose=2) 
 
 
 
 

 
 

 

 

Overfitting  

 
In every complex model there is a risk of overfitting. This is 

easy to demonstrate with polynomial fitting. If a N-order 

polynome is fitted to N data points it will fit perfectly to 

the points but in between the data can be very bad. If we have 

test set of points we can easily see the overfitting.  
 

 

teach the 
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optimize the parameter set 



 

Another example: 

 
 

 

The best model is not the model that fit best to the data but 

that have the best predictive power.  

 
 

The example to order-N polynome is trivial but the overfitting 

is a real problem in every ML model. Naturally the model need 

to be good enough, so one can also underfit the problem. To 

find good balance a lot of testing is needed.  

 

Machine learning methods  
 

There are several ML methods. Many of them have been 

implemented to sklearn python package.  

 
Methods for labeled data (we know the data objects, like 

Pt(111) surface or PtAg mixture. This sounds trivial but if we 

have pictures and we need to know what is in them (a cat or a 



car or a human) the situation is more difficult. The labeled 

data is considered expensive since it need humans to make the 

labelling.)  

 
• Regression algorithms: Linear and logistic regression are 
examples of regression algorithms used to understand 

relationships in data. Linear regression is familiar to all 

scientists. More sophisticated regression algorithm called a 

support vector machine.  
 
• Decision trees: Decision trees use classified data to make 
recommendations based on a set of decision rules. For example, 

a decision tree that recommends betting on a particular horse 

to win, place, or show could use data about the horse (e.g., 

age, winning percentage, pedigree) and apply rules to those 

factors to recommend an action or decision.  

 

We have used a lot the RandomForest method  
 
• Instance-based algorithms: A good example of an instance-
based algorithm is K-Nearest Neighbor or k-nn. It uses 

classification to estimate how likely a data point is to be a 

member of one group or another based on its proximity to other 

data points.  
 
Methods for unlabeled data (opposite the labeled data, we do 

not need to know the object. Very often the ML task is to 

identify them.)  
 

• Clustering algorithms: Think of clusters as groups. 
Clustering focuses on identifying groups of similar records 

and labeling the records according to the group to which they 

belong. This is done without prior knowledge about the groups 

and their characteristics. Types of clustering algorithms 

include the K-means, TwoStep, and Kohonen clustering.  

 
• Association algorithms: Association algorithms find patterns 
and relationships in data and identify frequent ‘if-then’ 

relationships called association rules. These are similar to 

the rules used in data mining.  
 
• Neural networks: A neural network is an algorithm that 
defines a layered network of calculations featuring an input 

layer, where data is ingested; at least one hidden layer, 

where calculations are performed make different conclusions 

about input; and an output layer, where each conclusion is 

assigned a probability. A deep neural network defines a 

network with multiple hidden layers, each of which 

successively refines the results of the previous layer.  
 



Often the labeled data is needed (or it is very useful) for 

teaching the unlabeled algorithms.  

 

 
 

Descriptors  
 
Descriptors are very important in materials science. We should 

know the geometry and other properties of the material or 

molecules but how we will tell that to a machine. The 

descriptors can be almost anything. 

  
We did recently a study of HER (hydrogen evolution reaction) 

on N doped carbon nanotubes taking into account several 

defects. Overall, there was 8 different defects and several 

hydrogen configurations. Totally we did ca. 7000 DFT 

calculations. The output was the hydrogen binding energy. 

(Kronberg, Lappalainen, Laasonen, JPCC, 125, 15918 (2021)). In 

this project we used the Random Forest method and a very new 

Shapley analysis of the data.  

 

 



 
 

This project had rather complex descriptors. This example is 

not the easiest one, but it illustrates that the very 

different descriptors can be used.  



 



One interesting descriptor is Extended-connectivity 

fingerprint (ECFP). It is a systematic tool that list atoms 

environment in molecules. (Ref: Rogers and Hahn, J. Chem. Inf. Model. 

2010, 50, 5, 742–754). The 0 level is the atom itself, the level 1 

contains the atoms neighbors and so on.  



Next one can list all the different ECFP’s of all the studied 

molecules. There are quite a few of them but surprisingly few. 

We did a project in which there was 7000 different molecules 

and we found 1025 ECFP4’s 

 
In this case the descriptor was the presence of the ECFP4. 

Mathematically a vector of 0’s and 1’s with length 1025.  

 

Results  
 
Naturally the RF model learned the data well. The parity plot 

compares the computed (DFT) values to the ML predictions. 

 



As one can see, where there is a lot of data the learning is 

good and at the very negative values the scattering is larger. 

The accuracy of the trained data is below kcal/mol, which is 

better than the DFT accuracy. One can also see the effect of 

the size of the sample. We did some PBE0 calculations. Here 

the data set is much smaller and the learning errors are 

larger.  

 
 
Figure 3: Unbiased generalization performance of the RF models based on 10_5-fold nested 
CV on the GGA and hybrid HF/DFT datasets. The solid bars denote a lower bound of the 
respective averaged errors while the hatched parts indicate the variability as twice the 
standard deviation across the outer CV folds. The average coefficients of determination with 
standard deviations are annotated above the bars. The limit of chemical accuracy is marked 
for reference by the dashed line.  
 
The next deep question is how the descriptors contribute to 

the output. This is usually addressed on rather superficial 

way. Typically, the methods like RF will return the weight of 

the descriptors. This is useful if some of the descriptors 

have low weights. Then one can reduce the descriptors and 

still get quite good predictions with less descriptors.  

 



 

Explainable AI, the Shapley analysis  
 

Rather recently a very interesting Shapley additive 

explanation (SHAP) methods has been introduced. It will 

approximate the model output with additive functions ϕ, 

Shapley values. The ML predicted value f can be written as  

 

𝑓(𝑥) = 〈𝑓〉 + ∑ 𝜙𝑗(𝑓, 𝑥)

𝑗

  

 

where <> is the average of f and x are the descriptors. Even 

this looks very simple the computation of the Shapley values 

is complicated. The brake-through publication is form 2017 

(Lundberg, S. M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. 

Neural Inf. Process Syst. 2017; pp 4765–4774.)  
 
The SHAP analysis gives much more information of the ML 

procedure. We can analyse the individual descriptor 

contribution to the output. If we have chemically meaningful 

descriptors we can learn a lot more form the results. Below is 

an example of the molecules redox potential prediction. The 

numbers refer to the ECFP4 features in the molecules (0 means 

that they are not present and 1 that they are). Note that the 



1015 lowest weight descriptors have very small contribution 

and the descriptor 1010 has very large contribution.  

 

 



The SHAP analysis has results to a new subfield of ML, the 

explainable artificial intelligence (XAI). There are several 

problems where it is very useful to understand where the ML 

predictions come from. Clearly materials development projects 

belong to this class.  

Where we can get the data for ML projects  
 
In chemical and material science problems we have some large 

experimental databases (DB), like the crystal structure DB’s 

but for many properties we do not have large DB’s. Individual 

values can be found form the literature but if we need 

thousands of numbers large scale DFT computations are a 

promising approach. The experimental data form various sources 

can contain errors whereas if the DFT computations are done 

systematically the data is of good quality. Of course, the DFT 

is not perfect but for ML we need trends and large data sets. 

This is the reason why most chemistry and materials science ML 

project are based on DFT calculations.  

 
Because the DFT results are so useful (for ML) there are also 

BD’s for the DFT results, like NOMAD. A good review of the 

Databases is Himanen et al. Adv. Sci. 2019, 6, 1900808, DOI: 10.1002/advs.201900808  
 
NOMAD: Provides storage for full input and output files of all important computational 

materials science codes, with multiple big-data services built on top. Contains over 50 236 
539 total energy calculations.  
 
Warning the databases are not always easy to use and the data 

quality can be quite poor. We did a M.Sc. study of chemical 

reactions using DFT DB’s and the results were not very good. 

We are in the beginning of the DFT DB’s and the rules what one 

need to store to the DB’s does not exist. It also seems that 

the data in the DB’s are not checked very carefully. I hope 

that the quality DB’s will improve in the future. Naturally 

this criticism does not apply to all databases.  

 

Data quality  
 

Remember: GARBAGE IN GARBAGE OUT  

 

Data quality is essential to ML. Wherever you get the data one 

should be skeptical of its quality.  

 
Are there some chemical bound the data should full fill?  

In large databases are there duplicated data.  

When the ML parity plot is done are there some outliers in the 

data. They can be due to the poor ML model OR form poor input 



data. When doing 1000’s of DFT calculations, are all the 

results converged? If using external DB’s how you know the 

data quality.  

 

Predictability  
 
The predictability is one of the hardest questions in ML. We 

can easily analyse the predictability of the data set we have 

but what happen if we go outside the data set. If the new 

molecules (or materials) are similar we can expect reasonable 

predictions. But what is “similar”?  

 
The larger and more diverge the learning DB is the more we can 

predict. We need tool to analyse the divergence of the DB’s 

then we can have some information what can be predicted. 


