

 Computational Chemistry 2 Chapter 12 2021

Machine learning basics

There are several machine learning (ML) courses in Aalto so this

lecture will not be very broad or deep.

Almost all science is fitting models to datasets. Experiments are

designed to collect data from which knowledge is extracted by using

accepted theories. The experimental data is fitted to theories if they

exist (natural science vs. human science).

Now we can have a lot of data which is not connected to theories, like

images, but there is some information in this data. How can we find

information or correlations form vast data sets. Answer: Machine

learning

ML is used in many fields, like pharmaceutical industry and gene

studies (bioinformatics), image and speech recognition, machine

translation, etc..

We meet the ML every day in applications like Apple Siri and in many

net advertising sites.

Huge amount of ML methods has been collected to a python library Scikit-

learn. This is a very convenient way to do ML computations.

The sklearn is easy to use in python or in Jupyter notebooks

import sklearn
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.kernel_ridge import KernelRidge
import matplotlib.pyplot as plt

Machine learning classes

I used the https://www.ibm.com/cloud/learn/machine-learning web-page.

Supervised learning (SL): The aim is to learn known outputs and find

good descriptors for the system. This is the most relevant ML for

materials science. This is also a relatively easy ML problem.

Unsupervised learning (UL): The aim is to classify data and find

patterns in it. Example: understanding hand-written text. This is more

difficult and usually a lot of data is needed. Typically, the UL

methods will cluster data with some similarity methods.

Semi-supervised learning: A mixture of the two methods above. For

example, in some cases the output is known. Example: we can know some

of the hand-written letters. If the data set have 100 000 examples we

know 300 of them and the machine need to learn rest of them.

There are several ML methods, like neural networks, decision trees,

regression algorithms. We came to them a bit later.

Data quality is an important aspect. Is the data balanced, free of

major errors, is there duplicated data, are there outliers, what is the

“noise level” in the data, etc. These are usually difficult questions

and hard to answer before the analysis. One still need to make sure

that the data quality is as good as possible.

How large the data set should be? As large as possible, but in

materials science the data set are usually not very large. Data size of

below 100 is challenging since all ML methods rely on statistic. 1000

is OK and larger set are even better.

Data

 ML

 Target

The quality of the data set can be tested by enlarging the data. Below

blue is the training error and red is the test error. (The analysis is

based in 10-fold cross validation, sorry of the low quality figure)

Validation

One of the main topic in ML is the method validation. To that end the

original data set is divided to training and test set. The training set

is used to teach the ML methods and the data in the test set is NOT use

in the training. The test set size is typically 2-5 % of the data. The

test set is chosen randomly to form the data. This procedure can be

repeated on many data divisions.

Cross validation: One can make the training/test data

partitioning several times. This approach produces several ML

models and test and in this way quality of the ML models can

be tested better than on single data partitioning.

Each data set will give different fit the model. With cross

validation we can get statistic of the fit.

One can also leave some data out of the cross validation data

and use that as second level test set or publication set. The

publication set is never used in training.

(This wiki page is very good:

https://en.wikipedia.org/wiki/Cross-validation_(statistics))

ML methods parameter optimising

All ML methods contain parameter and they need to be optimized

to ensure that the ML methods is working optimally. In sklearn

the default parameters are quite good (if the data set is

reasonably large). The teaching is simple if one is using

GridSearchCV methods. There are more sophisticated methods.

(for all this see the Sklearn manual, https://scikit-

learn.org/).

model = RandomForestRegressor()

parameters = {"n_estimators": range(20, 80, 10), "min_samples_split":[2,3]} # for RF

clf = GridSearchCV(model, parameters, cv = 10, verbose=2)

output : score, parameters

Data

Data

test

data

Data

test

data

test

data

Data

 test

data

publicat set

-0.4466248626907848 {'min_samples_split': 3, 'n_estimators': 30}

-0.45742261440125276 {'min_samples_split': 3, 'n_estimators': 50}

-0.4587929994651951 {'min_samples_split': 3, 'n_estimators': 60}

-0.4597841296896924 {'min_samples_split': 3, 'n_estimators': 40}

-0.4648287622992993 {'min_samples_split': 2, 'n_estimators': 40}

-0.4660148003169513 {'min_samples_split': 3, 'n_estimators': 70}

-0.4662565949899477 {'min_samples_split': 2, 'n_estimators': 60}

-0.4711060835686439 {'min_samples_split': 2, 'n_estimators': 50}

or

model = GradientBoostingRegressor()

parameters = {'learning_rate': np.arange(0.05, 0.3, 0.05), "loss": ['ls', 'huber'],
"n_estimators": range(20, 80, 10), 'subsample': [1.0, 0.9]}

clf = GridSearchCV(model, parameters, cv = 10, verbose=2)

Overfitting

In every complex model there is a risk of overfitting. This is

easy to demonstrate with polynomial fitting. If a N-order

polynome is fitted to N data points it will fit perfectly to

the points but in between the data can be very bad. If we have

test set of points we can easily see the overfitting.

teach the

ML model

teach the ML model with a

parameter set

optimize the parameter set

Another example:

The best model is not the model that fit best to the data but

that have the best predictive power.

The example to order-N polynome is trivial but the overfitting

is a real problem in every ML model. Naturally the model need

to be good enough, so one can also underfit the problem. To

find good balance a lot of testing is needed.

Machine learning methods

There are several ML methods. Many of them have been

implemented to sklearn python package.

Methods for labeled data (we know the data objects, like

Pt(111) surface or PtAg mixture. This sounds trivial but if we

have pictures and we need to know what is in them (a cat or a

car or a human) the situation is more difficult. The labeled

data is considered expensive since it need humans to make the

labelling.)

• Regression algorithms: Linear and logistic regression are
examples of regression algorithms used to understand

relationships in data. Linear regression is familiar to all

scientists. More sophisticated regression algorithm called a

support vector machine.

• Decision trees: Decision trees use classified data to make
recommendations based on a set of decision rules. For example,

a decision tree that recommends betting on a particular horse

to win, place, or show could use data about the horse (e.g.,

age, winning percentage, pedigree) and apply rules to those

factors to recommend an action or decision.

We have used a lot the RandomForest method

• Instance-based algorithms: A good example of an instance-
based algorithm is K-Nearest Neighbor or k-nn. It uses

classification to estimate how likely a data point is to be a

member of one group or another based on its proximity to other

data points.

Methods for unlabeled data (opposite the labeled data, we do

not need to know the object. Very often the ML task is to

identify them.)

• Clustering algorithms: Think of clusters as groups.
Clustering focuses on identifying groups of similar records

and labeling the records according to the group to which they

belong. This is done without prior knowledge about the groups

and their characteristics. Types of clustering algorithms

include the K-means, TwoStep, and Kohonen clustering.

• Association algorithms: Association algorithms find patterns
and relationships in data and identify frequent ‘if-then’

relationships called association rules. These are similar to

the rules used in data mining.

• Neural networks: A neural network is an algorithm that
defines a layered network of calculations featuring an input

layer, where data is ingested; at least one hidden layer,

where calculations are performed make different conclusions

about input; and an output layer, where each conclusion is

assigned a probability. A deep neural network defines a

network with multiple hidden layers, each of which

successively refines the results of the previous layer.

Often the labeled data is needed (or it is very useful) for

teaching the unlabeled algorithms.

Descriptors

Descriptors are very important in materials science. We should

know the geometry and other properties of the material or

molecules but how we will tell that to a machine. The

descriptors can be almost anything.

We did recently a study of HER (hydrogen evolution reaction)

on N doped carbon nanotubes taking into account several

defects. Overall, there was 8 different defects and several

hydrogen configurations. Totally we did ca. 7000 DFT

calculations. The output was the hydrogen binding energy.

(Kronberg, Lappalainen, Laasonen, JPCC, 125, 15918 (2021)). In

this project we used the Random Forest method and a very new

Shapley analysis of the data.

This project had rather complex descriptors. This example is

not the easiest one, but it illustrates that the very

different descriptors can be used.

One interesting descriptor is Extended-connectivity

fingerprint (ECFP). It is a systematic tool that list atoms

environment in molecules. (Ref: Rogers and Hahn, J. Chem. Inf. Model.

2010, 50, 5, 742–754). The 0 level is the atom itself, the level 1

contains the atoms neighbors and so on.

Next one can list all the different ECFP’s of all the studied

molecules. There are quite a few of them but surprisingly few.

We did a project in which there was 7000 different molecules

and we found 1025 ECFP4’s

In this case the descriptor was the presence of the ECFP4.

Mathematically a vector of 0’s and 1’s with length 1025.

Results

Naturally the RF model learned the data well. The parity plot

compares the computed (DFT) values to the ML predictions.

As one can see, where there is a lot of data the learning is

good and at the very negative values the scattering is larger.

The accuracy of the trained data is below kcal/mol, which is

better than the DFT accuracy. One can also see the effect of

the size of the sample. We did some PBE0 calculations. Here

the data set is much smaller and the learning errors are

larger.

Figure 3: Unbiased generalization performance of the RF models based on 10_5-fold nested
CV on the GGA and hybrid HF/DFT datasets. The solid bars denote a lower bound of the
respective averaged errors while the hatched parts indicate the variability as twice the
standard deviation across the outer CV folds. The average coefficients of determination with
standard deviations are annotated above the bars. The limit of chemical accuracy is marked
for reference by the dashed line.

The next deep question is how the descriptors contribute to

the output. This is usually addressed on rather superficial

way. Typically, the methods like RF will return the weight of

the descriptors. This is useful if some of the descriptors

have low weights. Then one can reduce the descriptors and

still get quite good predictions with less descriptors.

Explainable AI, the Shapley analysis

Rather recently a very interesting Shapley additive

explanation (SHAP) methods has been introduced. It will

approximate the model output with additive functions ϕ,

Shapley values. The ML predicted value f can be written as

𝑓(𝑥) = 〈𝑓〉 + ∑ 𝜙𝑗(𝑓, 𝑥)

𝑗

where <> is the average of f and x are the descriptors. Even

this looks very simple the computation of the Shapley values

is complicated. The brake-through publication is form 2017

(Lundberg, S. M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv.

Neural Inf. Process Syst. 2017; pp 4765–4774.)

The SHAP analysis gives much more information of the ML

procedure. We can analyse the individual descriptor

contribution to the output. If we have chemically meaningful

descriptors we can learn a lot more form the results. Below is

an example of the molecules redox potential prediction. The

numbers refer to the ECFP4 features in the molecules (0 means

that they are not present and 1 that they are). Note that the

1015 lowest weight descriptors have very small contribution

and the descriptor 1010 has very large contribution.

The SHAP analysis has results to a new subfield of ML, the

explainable artificial intelligence (XAI). There are several

problems where it is very useful to understand where the ML

predictions come from. Clearly materials development projects

belong to this class.

Where we can get the data for ML projects

In chemical and material science problems we have some large

experimental databases (DB), like the crystal structure DB’s

but for many properties we do not have large DB’s. Individual

values can be found form the literature but if we need

thousands of numbers large scale DFT computations are a

promising approach. The experimental data form various sources

can contain errors whereas if the DFT computations are done

systematically the data is of good quality. Of course, the DFT

is not perfect but for ML we need trends and large data sets.

This is the reason why most chemistry and materials science ML

project are based on DFT calculations.

Because the DFT results are so useful (for ML) there are also

BD’s for the DFT results, like NOMAD. A good review of the

Databases is Himanen et al. Adv. Sci. 2019, 6, 1900808, DOI: 10.1002/advs.201900808

NOMAD: Provides storage for full input and output files of all important computational

materials science codes, with multiple big-data services built on top. Contains over 50 236
539 total energy calculations.

Warning the databases are not always easy to use and the data

quality can be quite poor. We did a M.Sc. study of chemical

reactions using DFT DB’s and the results were not very good.

We are in the beginning of the DFT DB’s and the rules what one

need to store to the DB’s does not exist. It also seems that

the data in the DB’s are not checked very carefully. I hope

that the quality DB’s will improve in the future. Naturally

this criticism does not apply to all databases.

Data quality

Remember: GARBAGE IN GARBAGE OUT

Data quality is essential to ML. Wherever you get the data one

should be skeptical of its quality.

Are there some chemical bound the data should full fill?

In large databases are there duplicated data.

When the ML parity plot is done are there some outliers in the

data. They can be due to the poor ML model OR form poor input

data. When doing 1000’s of DFT calculations, are all the

results converged? If using external DB’s how you know the

data quality.

Predictability

The predictability is one of the hardest questions in ML. We

can easily analyse the predictability of the data set we have

but what happen if we go outside the data set. If the new

molecules (or materials) are similar we can expect reasonable

predictions. But what is “similar”?

The larger and more diverge the learning DB is the more we can

predict. We need tool to analyse the divergence of the DB’s

then we can have some information what can be predicted.

