
Original Research Article

Algorithms and their others:
Algorithmic culture in context

Paul Dourish

Abstract

Algorithms, once obscure objects of technical art, have lately been subject to considerable popular and scholarly scrutiny.

What does it mean to adopt the algorithm as an object of analytic attention? What is in view, and out of view, when we

focus on the algorithm? Using Niklaus Wirth’s 1975 formulation that ‘‘algorithmsþ data structures¼ programs’’ as a

launching-off point, this paper examines how an algorithmic lens shapes the way in which we might inquire into con-

temporary digital culture.

Keywords

Algorithms, practice, materiality, configurations, visibility, code

Introduction

During my time as an undergraduate student in com-
puter science, algorithms were objects of concern in a
variety of ways – as practical rubrics for the design of
effective and efficient computer programs, as catalogs
of ways of working, as abstract formulations in text-
books and research papers, or as mathematical conun-
drums that might appear in exam papers. Alongside
compilers, libraries, specifications, languages, and
state machines, they formed part of the intellectual fur-
niture of that world.

From that perspective, it’s rather odd to find that
algorithms are now objects of public attention, arising
as topics of newspaper articles and coffee shop conver-
sations. When digital processes become more visible as
elements that shape our experience, then algorithms in
particular become part of the conversation about how
our lives are organized. From discussions over the role
that algorithms might play in hiring (Hansel, 2007) or
credit scoring (Singer, 2014) to inquiries into the
assumptions behind the algorithms that set the ambient
temperature in office buildings (Belluck, 2015), an
awareness has developed that algorithms, somehow
mysterious and inevitable, are contributing to the
shape of our lives in ways both big and small.

The public discussion of algorithms emerges out of
(and arises at the intersection of) a series of other

conversations. Some, for example, are entwined with
discussions of ‘‘Big Data,’’ with a focus on the ways
that online activities create data streams from which
algorithms extract patterns that guide the action of
institutions, corporations and states. Others frame dis-
cussions of algorithms in terms of automation and in
particular the kinds of high-speed action associated
with, say, programmed trading in stock markets,
high-frequency automated trades carried out by com-
puter systems without human intervention (Buenza and
Millo, 2013). Still others are concerned with the ways
that algorithmic developments are transforming aspects
of the labor relation, positioning human being as
resources to be deployed according to programmed
responses to demand, for instance in ride-sharing ser-
vices like Uber (e.g. Rosenblat and Stark, 2016). Each
of these is a broader or ongoing conversation into
which the algorithmic has become incorporated.

Relatedly, algorithms have also become objects of
academic attention in social and cultural studies,
often in the context of similar concerns. Working

University of California, Irvine, CA, USA

Corresponding author:

Paul Dourish, University of California, 5086 Donald Bren Hall, Irvine,

CA 92697-3440, USA.

Email: jpd@ics.uci.edu

Big Data & Society

July–December 2016: 1–11

! The Author(s) 2016

DOI: 10.1177/2053951716665128

bds.sagepub.com

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://

www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further

permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-

at-sage).

http://crossmark.crossref.org/dialog/?doi=10.1177%2F2053951716665128&domain=pdf&date_stamp=2016-08-24


across a number of areas, including finance, labor pol-
itics, governance, public policy, and organizational
strategy, scholars such as Barocas (2014), Gillespie
(2012), Glaser (2014), Manovich (2013), Pasquale
(2015), Seaver (2015), and Ziewitz (2015) have turned
attention to the way that algorithms are embedded
within topics of academic investigation or indeed may
constitute a significant new topic of attention in them-
selves. As with the public discussion, this academic
interest in algorithms is sometimes driven by the way
that algorithms are beginning to arise as objects of sig-
nificance within existing academic domains; in other
cases, it arises as part and parcel of a broader interest
in harnessing the tools of cultural analysis to under-
stand contemporary digital culture and its platforms
(e.g. Cox, 2012; Fuller, 2008; Mackenzie, 2006;
Manovich, 2001; Montford and Bogost, 2009).

However, the complex embedding of the topic of
algorithms into these related concerns raises some diffi-
culties. In particular, it requires us to be careful about
the bounds and limits of algorithms and their function-
ing. Just what is it that we have in view when we focus
on ‘‘algorithms’’ as the central object of analytic
attention?

In 1975, the pioneering computer scientist Niklaus
Wirth published a book entitled ‘‘AlgorithmsþData
Structures¼Programs’’ (Wirth, 1975). Wirth was one
of a group of researchers and academics who developed
and advocated for the idea of ‘‘structured program-
ming,’’ an approach to the design and engineering of
software systems that emphasized the stepwise, modu-
lar decomposition of problems and a similarly struc-
tured approach to software design and construction.
This approach made computer programs easier to
develop (especially by teams of programmers) and
easier to analyze, as well as more naturally aligning
computer programs, as engineering artifacts, with the
sorts of mathematical mechanisms by which they could
be analyzed and assessed. Wirth did not simply cheer
for this position from the sidelines; his own work in
programming language design and development pro-
vided software engineers with the tools they needed to
adopt the model, which soon became (and indeed, in
variant forms, remains) standard industrial practice.
‘‘AlgorithmsþData Structures¼Programs’’ focused
on the practice of software design in the structured
programming tradition, setting out the case for the
mutual design of algorithmic processes and the regular-
ized data representations or ‘‘data structures’’ over
which they would operate. At a time when the develop-
ment and analysis of algorithms was the dominant and
most prestigious area of computer science, Wirth
wanted to emphasize the concomitant importance of
data structures for those building effective software
systems.

Wirth’s formulation � algorithmsþdata structures
¼ programs � highlights important concerns too for
those concerned with algorithms and digital culture.

The first is that algorithms and programs are differ-
ent entities, both conceptually and technically.
Programs may embody or implement algorithms (cor-
rectly or incorrectly), but, as I will elaborate, programs
are both more than algorithms (in the sense that pro-
grams include non-algorithmic material) and less than
algorithms (in the sense that algorithms are free of the
material constraints implied by reduction to particular
implementations).

The second, related, observation is that since algo-
rithms arise in practice in relation to other computa-
tional forms, such as data structures, they need to be
analyzed and understood within those systems of rela-
tion that give them meaning and animate them. There
is, in other words, within Wirth’s formula, an analytic
warrant for a relational and differential analysis of
algorithm alongside data, data structure, program, pro-
cess, and other analytic entities. This is not to dissolve
the algorithm in a sea of relations, but rather to under-
stand how algorithm – as a technical object, as a form
of discourse, as an object of professional practice, and
as a topic of public or academic concern – comes to
play the particular role that it does.

The goal of this paper is to sketch just this sort of
relational analysis and to place algorithm in juxtapos-
ition with other relevant terms both in order to identify
aspects of the scope and limits of ‘‘algorithm’’ as a con-
ceptual tool, and to understand how algorithms come
to act within broader digital assemblages. As Neyland
(2016) notes, the danger to be guarded against here is
taking an essentializing view of algorithms. Similarly,
my argument here should not be read as an essentialist
argument, seeking a foundational truth of the nature of
algorithms as natural occurrences. No such naturalism
can be sustained. Instead, the argument here is one of
ethnographic responsibility and practical politics. With
respect to ethnographic responsibility, I note that
‘‘algorithm’’ is a term of art within a particular profes-
sional culture – that of computer scientist, software
designers, and machine learning practitioners – and I
seek to understand the limits and particularlities of that
term’s use as a members’ term, its emic character, in
much the same way as we might similarly explore,
respect, and analyze the consequences of members’
terms within other cultural milieux. Secondly, as a
matter of practical politics, I take it that the domain
of Big Data is one into which social science seeks to
make an intervention, and suggest that critiques of
algorithmic reasoning that set their own terms of refer-
ence for key terminology are unlikely to hit home.
Again, this is not to grant primacy or authority to a
technical interpretation; the goal rather is to

2 Big Data & Society



understand what that technical interpretation is, and
what consequences it might hold for social and cultural
analysis. The paper takes up the question of what algo-
rithms do within the domain of Big Data’s professional
practices, as ‘‘convening’’ objects (Ananny, 2016), and
as objects that live in dynamic relations to the other
material and discursive elements of software systems
and the setting that produce them. In doing so, I
hope to be able to identify fruitful directions for
taking up the algorithm as an object of attention
within software studies and allied domains.

Algorithms and their others

In computer science terms, an algorithm is an abstract,
formalized description of a computational procedure.
Algorithms fall into different types according to their
properties or domains – combinatorial algorithms deal
with counting and enumeration, numerical algorithms
produce numerical (rather than symbolic) answers to
equational problem, while probabilistic algorithms pro-
duce results within particular bounds of certainty.
Algorithms may also vary in terms of their analytic
characteristics, such as generalized performance char-
acteristics (e.g. how their mean-time or best-time per-
formance varies with the size of the data sets over which
they operate). As part of the stock-in-trade of computer
scientists and software engineers, some algorithms are
known by the names of their inventors (Dijkstra’s algo-
rithm, the Viterbi algorithm, Gouraud shading, or
Rivest-Shamir-Adelman) while others are known by
conventional names (e.g. QuickSort, Fast Fourier
Transform, Soundex, or sort-merge join).

The significance of some of these properties – for-
malization, abstraction, identity, and so on – becomes
clearer when we look at algorithms in the context of
their ‘‘others’’ – related but distinct phenomena that
emphasize different aspects of the sociotechnical assem-
bly. In speaking of what an algorithm ‘‘is’’ and ‘‘is
not,’’ I am not asserting its stable technical identity;
rather, my motive is to be ethnographically true to a
members’ term and members’ practice. As such, then,
the limits of the term algorithm are determined by
social engagements rather than by technological or
material constraints. While social understandings and
practices evolve, algorithm, as a term of technical art,
nonetheless displays for members some precision and a
meaning within a space of alternatives. When technical
people get together, the person who says, ‘‘I do algo-
rithms’’ is making a different statement than the person
who says, ‘‘I study software engineering’’ or the one
who says, ‘‘I’m a data scientist,’’ and the nature of
these differences matters to any understanding of the
relationship between data, algorithms, and society.
Accordingly, an investigation of the particular territory

staked out by the term ‘‘algorithm’’, in among other
related terms and phenomena, seems worthwhile, espe-
cially if the algorithm is presented as a site of particu-
larly valuable leverage in contemporary debates.

With that caution in mind, then, we can consider the
work that the term ‘‘algorithm’’ does and might do for
social analysis contextually.

Algorithm and automation

Perhaps the most diffuse concern expressed by discus-
sion of algorithms is that which uses the notion meto-
nymically to address the regime of digital automation
most broadly. Here, the concern is not with algorithms
as such, but with a system of digital control and man-
agement achieved through sensing, large-scale data
storage, and algorithmic processing within a legal, com-
mercial, or industrial framework that lends it authority.
We might point here to discussions of credit scoring
(e.g. Zarsky, 2016), digitally enhanced public surveil-
lance (e.g. Graham and Wood, 2003), or plagiarism
detection (e.g. Introna, 2016) as cases where concerns
with the algorithmic, in part or in whole, stand in for
critiques of the larger regime of computer-based moni-
toring and control. To be sure, crucial issues of labor
politics, social justice, personal privacy, public account-
ability, and democratic participation are thrown up by
this technologically enabled system of management,
and the expansion of the sorts of regulative, coercive,
and divisive processes that are the legacy of Charles
Babbage and Frederick Taylor, and algorithms play a
critical role in these. Indeed, these are among the most
important areas of political analysis that an under-
standing of ‘‘algorithm’’ as a term of technical art
and practice can illuminate. Nonetheless, the wholesale
equation of algorithm and automation makes this work
more, rather than less, difficult. If we want to be able to
speak of algorithms analytically in order to identify
their significance as specific technical and discursive
formulations then we need to be able to better identify
how they operate as part of, but not as all of the larger
framework.

Algorithm and code

At a greater level of specificity, we might consider the
distinctions to be drawn between algorithms and code.
In various forms, code has been a particular focus of
attention in software studies, acting as it does as a site
of material, textual, and representational production.
Code is software-as-text, and particularly in the form
of ‘‘source code,’’ the human-readable expressions of
program behavior that are the primary focus of pro-
grammers’ productive attentions, it has perhaps been
particular by those working under the umbrella of

Dourish 3



‘‘critical code studies’’ (see, e.g., Berry, 2011; Montford
et al., 2012).

In textbooks and research papers, algorithms are
often expressed in what is informally called ‘‘pseudo-
code,’’ a textual pastiche of conventional programming
languages that embodies general ideas that most lan-
guages share without committing to the syntactic or
semantic particulars of any one. Pseudo-code expresses
the abstract generality of an algorithm, the idea that it
can be operationalized in any programming language
while transcending the particulars of each. It also
expresses the promise of an algorithm, the idea that it
is code-waiting-to-happen, ready to be deployed and
brought to life in programs yet to be written (Introna,
2016). The idea that the relationship between the algo-
rithm and the code is largely a temporal one is perhaps,
then, not surprising, and yet there are distinctions that
have a good deal of significance from an analytic per-
spective. I will outline four here.

First, while the transformation of an algorithm
(described in mathematical terms or in pseudo-code)
into code may be relatively straight-forward (although
it is not necessarily so), the reverse process – to read the
algorithm off the code – is not at all a simple process.
There are a number of circumstances in which this need
arises. Assessing whether an algorithm has been cor-
rectly implemented by a piece of code, for example, is
one case of attempting to ‘‘read off’’ the algorithm (as
implemented) from the code, and the complexity of this
is made clear by the many cases in which errors slip
through. Within the domain of Internet security, for
example, there have been a number of headline cases
lately where trusted code did not in fact correctly imple-
ment the algorithm that it was meant to embody, leav-
ing systems open for attack and data breaches; the
‘‘Heartbleed’’ incident is among the best known
(Durumeric et al., 2014). The difficulty of reading an
algorithm off the code also lies at the heart of patent
disputes (over whether a given piece of code does or
does not implement a protected algorithm, for instance)
as well as simply cropping up as a practical problem for
a programmer charged with understanding, maintain-
ing, modifying, or porting an existing software system
written by another (or sometimes even the code we
wrote ourselves).

Second, algorithms and code have different locality
properties. One of the reasons, in fact, that the algo-
rithm may not be easy to read off the code is that the
algorithm may not happen all in one place. The algo-
rithm, an apparently singular object when it appears on
the page of a book, becomes many different snippets of
code distributed through a large program. Even if they
happen in sequence when a program is executed, they
may not occur together or even nearby within the text
of a program. In a program, they may be intermixed

with elements of other algorithms, or they might simply
be distributed between different modules, different
methods, or different functions, so that they operate
of the algorithm is (intentionally or unintentionally)
obscured.

Third, algorithms are manifest differently on differ-
ent code platforms. Object-oriented languages, proced-
ural languages, functional languages, and declarative
languages are all based on different paradigms for
code expression and so will express the same algorithm
quite differently. Particular examples of those language
styles have different features and different sets of
libraries, and will be able to rely on those in different
ways to carry out some of the algorithm’s operations.
Different computer architectures, different data storage
technologies, different arrangements of memory hier-
archy, and other features of a platform mean that the
code of an algorithm is highly variable and highly spe-
cific. The ‘‘governing dynamics’’ of algorithms
(Ananny, 2016), then, are only in part algorithmic;
they are as much platform effects.

The fourth observation is something of a corollary
to the others, although one with particular conse-
quences. One reason that an algorithm can be hard to
recover from a program is that there is a lot in a pro-
gram that is not ‘‘the algorithm’’ (or ‘‘an algorithm’’).
The residue is machinic, for sure; it is procedural, it
involves the stepwise execution of one instruction fol-
lowed by another, and it follows all the rules of layout,
control flow, state manipulation, and access rights that
shape any piece of code. But much of it is not actually
part of the – or any – algorithm. An algorithm might
express, for example, how to transform one kind of
data representation into another, or how to reach a
numerical result for a formula, or how to transform
data so that a particular constraint will hold (e.g. to
sort numbers) – but actual programs that implement
these algorithms need to do a lot more besides. They
read files from disks, they connect to network servers,
they check for error conditions, they respond to a user
interrupting a process, they flash signals on the screen
and play beeps, they shuffle data between different stor-
age units, they record their progress in log files, they
check for the size of a screen or the free space on a disk,
and many other things besides. An algorithm may
express the core of what a program is meant to do,
but that core is surrounded by a vast penumbra of
ancillary operations that are also a program’s respon-
sibility and also manifest themselves in the program’s
code. In other words, while everything that a program
does and that code expresses is algorithmic in the sense
that it is specified in advance by formalization, it is not
algorithm, in the sense that it goes beyond things that
algorithms express, or even what the term ‘‘algorithm’’
signals as a term of professional practice.

4 Big Data & Society



Algorithm and architecture

The third distinction that it is useful to take up is that
between algorithm and architecture. This is an elabor-
ation of part of the earlier discussion, but an elabor-
ation that has particular relevance in the context of
contemporary networked systems.

I noted above that algorithms, in the sense of par-
ticular formulations of program behavior, may not be
easily localizable in code. That is, although they are
often defined in terms of a ‘‘sequence of steps’’ or
‘‘sequence of operations’’, that sequence may not be
laid out as a sequence of statements or sequence of
lines in a program’s text. The algorithm, then, is dis-
tributed or fragmented in a program.

Most contemporary programs of any complexity,
however, are extremely large – often numbering in the
hundreds of thousands or millions of lines of code –
and must be arranged according to some organizational
structure in order to help programmers and teams
manage their complexity and comprehend the whole.
So-called software ‘‘architecture’’ concerns the arrange-
ment of units, modules, or elements of a larger system,
and the patterns of interaction between those units. The
nature of the units and the nature of the communica-
tion between them depend both on the system’s archi-
tecture and on the underlying platform. Units might
relate to each other as libraries, as inheritance hierar-
chies, as containerized components, as client/server, or
in a host of related ways. The details are not of rele-
vance to the argument here, but the point is this: first,
that ‘‘the algorithm’’, to the extent that it can be treated
as a unit, may not be localized even within a module,
never mind within a simple extent of code; and second,
that modules may be highly isolated from each other,
their code unavailable to each other, perhaps written by
different programmers, running on different computers,
located within different administrative and manage-
ment domains, and so forth.

For instance, we might talk of the algorithm by which
the Internet manages the flow of data in a Transmission
Control Protocol (TCP) stream.Data flowmust be regu-
lated so as to avoid congestion on transmission lines,
and indeed the development of a new congestion avoid-
ance algorithm in the late 1980s was crucial in allowing
the Internet to scale to its current size (Jacobson, 1988).
This ‘‘algorithm’’ though is hard to locate in practice. It
is an algorithm that governs the behavior of two parties,
the two end-points of a communication on a network, so
they are, by definition, almost always on two different
computers. Those different computers quite likely run
two different implementations of the TCP/IP protocols,
written by different people, and quite possibly the pri-
vate, undisclosed code belonging to two different organ-
izations. Galloway (2004) has examined protocol as a

form of decentralized control, focusing on the questions
of conformance and regulation that underlie networked
actions, but the protocol, as an agreement or specifica-
tion to which both parties must conform, obscures, to
some extent, the algorithm itself. The algorithm specifies
how a protocol should be implemented but it cannot be
easily located as an algorithm in the running system,
distributed as it is between different sites. More gener-
ally, the factoring of system behavior into a range of
components, some of which are bound together in the
same address space, some of which are distributed as
different threads or processes, some of which are imple-
mented on different computers, many of which are vis-
ible to each other only through restricted interfaces,
often means that the ‘‘algorithm’’ can not only not be
located within an easily delineated stretch of code, but
not even within a single computer or the network of a
single organization.

Given how many contemporary systems are net-
work-based or network-backed, are designed for
large-scale clusters, or even just depend on multi-core
or graphics processor-based architectures common in
contemporary personal platforms from desktops to
wearables, the question of distribution is pervasive.
Introna (2016) suggests the language of Barad’s
(2007) agential realism as a way of thinking about
this, recognizing that the ‘‘algorithm’’ is itself an ‘‘agen-
tial cut’’, a means of constituting some semi-stable
object within a dynamic and unfolding socio-technical
assembly. This does not diminish the power of ‘‘algo-
rithm’’ as a way of accounting for the operation of a
digital assemblage, by any means, but it does imply that
‘‘algorithm’’ may dissolve into nothing when we drill
down into the specific elements of a system that might
be subject to audit or focused critical or forensic exam-
ination (c.f. Kirschenbaum, 2008). Introna’s analysis
shows that we should examine both what work it
takes to identify certain aspects of a running system
as the manifestations of an algorithm, and also what
is achieved through that collective process and practice
of identification.

Algorithm and materialization

The final distinction to explore here is that between the
algorithm and its manifestation not just in a piece of
code or even in a larger software system but in a specific
instantiation – as a running system, running in a par-
ticular place, on a particular computer, connected to a
particular network, with a particular hardware config-
uration. All of these critically shape the effect that the
algorithm has.

That material configurations limit the effectiveness
or reach of algorithms is no surprise; algorithmic for-
mulations do not take into account the storage speeds,

Dourish 5



network capacities, instruction pipelines, or memory
hierarchies, each of which can have a crucial effect on
algorithmic performance. More interestingly, though,
the converse is also true – our experience of algorithms
can change as infrastructure changes.

Consider an example taken from nuclear weapon
simulation (see Dourish and Mazmanian, 2013). Due
to nuclear test ban treaties, the nuclear powers have not
detonated nuclear weapons in several decades.
However, they continue to develop and introduce new
weapons. To do so with no testing would be foolhardy,
and so new designs are tested but only through simu-
lation (Gusterson, 2001, 2008). In fact, we might argue
that it was the ability to produce credible digital simu-
lations of nuclear explosions that made test limitation
treaties possible. At this point, the design of new
nuclear warheads and weapons is so intrinsically tied
to the technology of simulation that one could cite the
technology of simulation as one of the major limits
upon the production of new weapons. Advances in
simulation technology make new simulations practical,
and those new simulations open up new avenues for
weapons design. Note that the algorithms do not need
to change in this scenario; only the technologies upon
which they are implemented. The simulation – the algo-
rithm – remains unchanged, but the shifting techno-
logical base upon which an implementation of that
algorithm runs means that the capacities of that algo-
rithm and its effectiveness within a design process is
changing. New technologies shift the effect and
impact of an algorithm without changing the algorithm
itself; they expand the bounds of algorithmic
possibility.

Security infrastructures are a second area where
these changes have made a difference. For instance,
even simplistic so-called ‘‘brute-force attacks’’ on pass-
word systems (systematically attempting every possible
password) that were once infeasibly hard with simple
password technology are now trivial; more sophisti-
cated attacks on more complicated cryptographic sys-
tems are similarly now just a matter of assembling
enough computing power.

In a wide-ranging examination of algorithms that
takes the Viterbi path algorithm as its key example,
Mackenzie (2005) takes up some of these questions.
The algorithm is powerful and has many applications,
but much of what makes it effective in our world is the
fact that particular implementations of the algorithm
can be embodied in devices and infrastructures with
specific operating capacities. Mackenzie’s analysis
focuses on digital temporality, and here we find a key
concern with algorithms and their materialization. To
speak of an algorithm like the Viterbi algorithm as
‘‘fast’’ is to speak of its complexity, its efficiency and
the conditions that limit its performance, but this tells

us nothing about how quickly or slowly it might actu-
ally perform in practice. The only things that have
actual measurable performance (measured in seconds
or fractions thereof) are implementations, in software
or in silicon. The algorithm, in other words, must be
understood both as a formalized account of computa-
tional possibilities and as a practical tool, and the rela-
tionship between these two is not fixed.

Inscrutibility

Stretching across all these discussions are a series of
distinctions that seem to anchor the social analysis of
algorithms. Algorithms are presented as fast, rather
than slow; as automated, rather than hands-on; as
machinic, rather than human. Each of these presents
a series of problems when algorithms move into new
domains.

Perhaps the most significant contrast, though, con-
cerns the problems of inscrutability. The focus of sev-
eral examinations has been the question of
accountability and assessment thrown up by the fact
that algorithms are opaque; their operation cannot be
examined as easily as those of human actors, for a var-
iety of reasons, leading us to look for new ways to make
algorithmic processes visible, to render algorithms
accountable, and to find within the algorithmic process
some opportunity for audit, external review, and exam-
ination (e.g. Pasquale, 2015; Sandvig et al., 2014). Here,
I draw on a recent article in these pages by Jenna
Burrell (2016), who lays out some of the foundations
for algorithmic opacity in order to trouble some of
these calls for audit.

Algorithmic opacity

Burrell begins from the problems posed by opaque
algorithms. For those for whom algorithmic practice
potentially embodies an end-run around traditional
forms of legislative accountability, this opacity is a
severe problem, and some, such as Pasquale (2015),
have argued that algorithms need to be available to
audit. Burrell points out, though, that there are mul-
tiple different sources of algorithmic opacity, with dif-
ferent relations to mechanisms of redress such as audit.
The first is the trade-secret protection that governs
many of the algorithms that lie behind services such
as Google, Facebook, and Twitter, but also those
that are used by financial institutions and other corpor-
ations. Audit might have the most force here, where
algorithms are held as secrets. A second source of opa-
city is that the ability to read or understand algorithms
is a highly specialized skill, available only to a limited
professional class; it depends upon particular education
and training. This suggests that audit, at least under

6 Big Data & Society



contemporary arrangements, will always be a professio-
nalized and specialized technical practice; with respect
to audit, we might be concerned about the problems
that have attended financial audit in cases like that of
Enron, for example. However, most problematic is
Burrell’s third source of opacity. As she notes, many
of the algorithms that have social and cultural signifi-
cance, including those that shape the flow of informa-
tion in social media, the distribution of search results in
search engines, and the production of recommenda-
tions in online retail, are statistical machine learning
algorithms. Operating over large amounts of data,
they observe, characterize, and act on patterns that
arise in the data. But these patterns are purely statistical
and probabilistic phenomena – they are not human des-
ignations. A ‘‘top-down’’ approach might operate in
terms of human-identified traits, and then seek to find
them in the data; the bottom-up approach of statistical
machine learning is to identify the patterns first and
then see if they can be made sense of for human
needs. So, for example, a ‘‘bottom-up’’ algorithm for
handwriting recognition has no concept of the alpha-
bet. It has not been programmed with the shape of the
letters ‘‘A’’ or ‘‘g’’. It has instead exposed to thousands
of examples, on the basis of which it is programmed to
recognize certain arrangements of strokes as being
characteristic of particular letters. Audit, in this case,
has no power to reveal what the algorithm knows,
because the algorithm knows only about inexpressible
commonalities in millions of pieces of training data.

The questions of what we know and what we can say
about the operation of machine learning or Big-Data
algorithms of this sort is a key issue at stake in algo-
rithmic analysis. During my years of computer science
training, to have an algorithm was to know something.
Algorithms were definitive procedures that lead to pre-
dictable results. The outcome of the algorithmic oper-
ation was known and certain. Much of the debate
about ‘‘algorithms’’ at the moment focuses on a par-
ticular class of algorithm – statistical machine learning
techniques – that produce, instead, unknowns. More
accurately, they produce analyses of data that are
known and understood in some terms (in terms of the
formal properties of the data set – its patterns and
regularities) but unknowable in others (in the terms of
the domain that the data represents.) When my credit
card company deems a particular purchase or stream of
purchases ‘‘suspicious’’ and puts a security hold on my
card, the company cannot explain exactly what was
suspicious – they know that there’s something odd
but they don’t know what it is.

When algorithms come to play a role in social
affairs, this begins to matter. As reported by Gillespie
(2011), activists in the Occupy Wall Street (OWS)
movement were surprised to note that the OWS

activities never became a ‘‘trending topic’’ on Twitter
(highlighted because of user activity). Some were con-
vinced that this must have indicated censorship; after
all, how could the latest pop sensation’s haircut or new
tattoo be more important than this mass political
action? The engineers at Twitter were adamant that
no censorship had gone on, but were themselves
unable to explain why OWS had not become a trending
topic. They can explain the algorithm (although it’s a
trade secret, so they don’t) – the factors that contribute,
the ordering and weighting of different properties of
tweets and hashtags – but that is not, in itself, enough
to account for what happens in the system. To under-
stand that, one must be able to characterize the specific
dynamics of the ever-roiling mass of data – the way that
people pick up ideas, the dynamics of how they repeat
them, the geographical waves of interest, all going by at
millions of tweets per minute. It is not just that we
cannot easily recreate the circumstances and forensic-
ally figure this out (as Heraclitus 2.0 might say, you
cannot step twice into the same data stream) but also
that the patterns that are being analyzed are ephemeral.
And yet we need to find ways to narrate them.

Although the forms of analysis in which statistical
machine learning techniques are embedded are referred
to with the term ‘‘Big Data,’’ there are in fact two scalar
moves at work. The first is a move from small to big –
from individual data to large data sets, from one record
to an accumulated mass of data (as in the Quantified
Self movement – c.f. Neff and Nafus, 2016), or from
one person to a large population. This is not only the
scalar move from which Big Data gains both its name
but also certain claims to statistical meaningfulness,
and it is the move that allows statistical techniques to
start to describe features of populations. The second
move, though, is from big to small again, and it is the
key move in narrating or accounting for the results of
Big Data analysis. Machine learning techniques cluster
data but humans read and narrate the clusters that arise
as signaling certain categories of people – pregnant
women, dual-income Minneapolis families in the
market for a new car, disaffected voters, or people
likely to cheat on their taxes. Each act of categorization
– or more accurately, of narration – is a move from big
to small, a reduction of a mass of data points to a
narrative element or a defining characteristic, drawn
generally from the domain of which we want to
know. Electoral data is gathered in order to tell us
about voters, and so we find voters in it; purchase
data formulates people as consumers, and so we find
consumer categories in it. And we find not only voters
and consumers, but voters and consumers who can be
made sense of in terms that make sense in the domain –
geography, income, lifestyle, history, engagement,
interests, and inclinations. Big Data analysis says

Dourish 7



‘‘this happens along with that’’ but the narratives we
tell of why are human ones, not technical ones. We are
inclined only to find things in Big Data that we
expected, in some sense, to find – or at least, we find
the kinds of things that we can make sense of.

It is useful here, then, to return to Wirth’s formula-
tion – algorithmsþdata structures¼ programs. It
speaks to the inherent duality of algorithms and data
in the production of running systems, and the problems
of attempting to understand one without the other.
Wirth speaks of data structures, rather than data,
because algorithms are designed around data structures
– about forms and regularities rather than around con-
tent. (An algorithm for sorting numbers is the same no
matter what the numbers – and indeed the same algo-
rithm should also be able to sort names, files, or dates.)
Similarly, Burrell’s concern with opacity also directs us
to be concerned about structures and regularities in
data sets and the mechanisms by which we struggle to
name them. Concerns with algorithms as inscrutable
and illegible may direct us instead towards the need
to example the sources of the apparent legibility of
data.

Some recent moves by European legislators have
shifted the conversation from ‘‘audit’’ to ‘‘explan-
ation,’’ arguing that citizens who are substantively
affected by the action of an algorithmic system should
have a right to an explanation of how that decision was
made (Goodman and Flaxman, 2016). The notion of
‘‘explanation’’ here reflects the duality of algorithm and
data and the way that each can play a role in automated
decision-making. At the same time, though, it begs
other questions, including, first, what degree of explan-
ation can successfully ‘‘explain’’ results, and, perhaps
more pertinently, how the production of such an
explanation – which must, of course be generated algo-
rithmically – can be itself explained.

Directions

What lessons might we draw from this analysis and
what directions does it suggest for future analytic
work around algorithms? Should we conclude that the
term ‘‘algorithm’’ is too beset with problems and mis-
understandings to function effectively in critique, and
that perhaps it is time to declare a moratorium on its
use? Conceptual confusions certainly abound, but the
term still carries weight and value if we can appropri-
ately locate it within a larger analytic frame.

One consequence is to pair analyses of algorithms
with analyses of the various phenomena of data –
data items, data streams, and data structures – upon
which they operate and in relation to which they are
formulated. The rise of interest in Big Data techniques
(e.g. Boellstorff and Maurer, 2015; Kitchin, 2014) is of

course a significant source of interest in algorithms in
the first place, but the topic of data structures – the
specific representations that organize data in order to
make it processable by algorithms – have been less
prominent. The consequences of representational
forms – of the way that data must be shaped to be
processed by databases or other informational systems
(e.g. Curry, 1998; Dourish, 2014), the organizing prin-
ciples of data archives (e.g. Edwards et al., 2011) or the
relationships between data format, data transmission,
and representation (e.g. Dourish, 2015; Galloway,
2004) – is the necessary dual of algorithmic processing.
While privacy discusses focus on data generation
and accumulation, data organization – the data struc-
tures of Wirth’s aphoristic equation – require similar
scrutiny.

A second concern to which our attention might be
drawn on the basis of this exploration is the question of
algorithmic identity. How might we go about identify-
ing and pinpointing algorithms in consequence of the
vagaries of implementation and the flux of evolution?
How can algorithms be isolated and examined, and
how much sense does it even make to attempt that
exercise? Calls for audit and accountability, or even
the manifestation of particular algorithms in order to
trace aspects of their history or movements, require
some attention to the identity conditions upon which
algorithmic sameness or similarity are founded. As
Gillespie (2012) has noted, algorithms shift and evolve
in deployment, particularly those hidden behind trade
secrecy barriers; talking in any coherent way about
‘‘Google’s search term prediction’’ algorithm, for
example, is deeply problematic given the invisible
shifts in implementation and strategy that lie behind
the scenes. Mackenzie (2005) considers the patterns of
repeatability that algorithms embody within them-
selves, although one might extend his analysis to con-
sider the forms of repeatability at work in either the
successive use of algorithms over different data sets,
or the multiple embodiments of ‘‘the same’’ algorithm
in different platforms and technologies. Again, the con-
cern is not to engage in an essentializing project with
the goal of laying down the criteria for algorithmic
sameness; the concern is more to understand how algo-
rithms are identified as, used as, or made to be the same
in different settings, circulating as they do among plat-
forms, institutions, corporations, and applications.

In turn, then, this might direct our attention towards
a third concern, that of the temporalities of algorithms
– not just the temporalities of their own processes
(although those matter, because not all algorithms pro-
duce answers quickly) but also the temporalities of their
evolution as implemented and deployed. Perhaps espe-
cially important here are the co-evolution of algorithms
and data streams, particularly in cases where these are

8 Big Data & Society



mutually influential. An algorithm for, say, modeling
climate data is not directly tied to the climate data
itself, although it might influence the design of new
sensors and data collection instruments (Edwards,
2010), but the algorithm by which Twitter determines
the ‘‘trending topics’’ that it will report does exist in a
feedback loop with the data over which it operates,
since trending topics displayed to users of Twitter and
influence their own action, including the topics they
search and the postings they retweet and comment
upon.

These concerns with algorithmic identity and evolu-
tion point towards an alternative approach to algo-
rithm studies which might put aside the question of
what an algorithm is as a topic of conceptual study
and instead adopt a strategy of seeking out and under-
standing algorithms as objects of professional practice
for computer scientists, software engineers, and system
developers. What power does the notion of ‘‘algo-
rithm’’ have within their conversations and collabor-
ations, and in what way are algorithms invoked,
identified, traded, performed, produced, boasted of,
denigrated, and elided? What are computer scientists
doing with they ‘‘do’’ algorithms, and for whom? In
this approach, we might examine algorithm as a feature
of the world of professional practice and as a member
category. A useful model here might be Eric
Livingstone’s (1986) ethnographic study of the work
of mathematicians and the role and nature of ‘‘proof’’
in their lived work. Focusing on the ‘‘proof’’ not as an
abstract truth but as a material form, something to be
written on blackboards, demonstrated in conversation,
and codified into academic career narratives,
Livingstone provides an account of the emergence of
an object of professional practice within the everyday
practical work of a scientific community. As studies by
Mackenzie (2015), Neyland (2016) and Seaver (2015)
begin to show, algorithms may benefit from a similar
approach. Wendy Chun (2008) has argued cogently for
the need to resist fetishizing technical objects such as
source code or algorithm, pointing out that a capitula-
tion to purely technical accounts risks obscuring the
social and cultural practices by which those technical
objects are animated in practice. While acknowledging
the force of this argument, I have suggested that both
ethnographic responsibility and practical politics
require that the term ‘‘algorithm’’ as an analytic cat-
egory must nonetheless be wielded with some precision.
Clearly, its emic character is not the limit of what can
be said for, with, or about it but we must nevertheless
be at least conscious of where and when we make delib-
erate moves to invoke the term in order to do new
conceptual work, and with what consequences. If the
term ‘‘algorithm’’ appears in social analyses to mean
just what it means emically, then it risks missing the

many other elements in relation to which the algorithm
arises; but by corollary, if it appears in social analyses
with some new and different meaning, then it becomes
difficult to imagine critiques hitting home in the places
that we hope to effect change.

Finally, one of the more intriguing issues to arise in
this exploration, and perhaps one that merits further
attention, is the relationship between algorithmic and
non-algorithmic within technological practice. That is,
if algorithms are distinguishable elements of software
design, delineable, identifiable, and perhaps even name-
able, then we also begin to recognize that there are
other elements in software systems that are machinic
and programmed but not actually themselves governed
by the sorts of things that are normally demarcated as
‘‘algorithms.’’ Some may be expressible algorithmically,
but they are not themselves the things with which algo-
rithm designers or algorithm analysts concern them-
selves. These include the happenstance interaction of
different systems not necessarily designed in concert
(such as the interactions between different flows on a
network, different services on a server, or different
modules in an application, but they also include the
work ‘‘around the edges’’ of algorithms even in their
most direct implementation – the housekeeping, the
error-checking, the storage management, and so on.
Given the easy slippage between ‘‘algorithmic’’ and
‘‘machinic,’’ or between ‘‘algorithmic’’ and ‘‘auto-
mated,’’ the emergence of a category of programmed
but not algorithmic activity within computer systems –
not governed by algorithms in the sense in which that
term is used within computational practice – is intri-
guing and suggestive. Certainly, it speaks to the poten-
tial problems that software studies might have in
talking to some of its potential audiences if it talks
purely in terms of ‘‘algorithms’’. Further, it speaks to
the disappearance within algorithm-oriented analysis of
the work of making algorithms work. Perhaps, too, it
suggests some useful parallels with, say, the elements of
engineered systems that are not themselves outcomes of
processes of design or engineering, and other gaps,
holes, and rifts between systems-as-manifest and sys-
tems-as-studied.

Understanding the limits and specificities of ‘‘algo-
rithm,’’ then, holds out the opportunity both to engage
more meaningfully in interdisciplinary dialogue and to
open up new areas for analysis around the edges of
algorithmic systems.

Acknowledgements

I would particularly like to thank Evelyn Ruppert for provid-

ing the invitation to present the lecture on which this paper is
based, and Matthew Fuller, Martin Brynskov, Lone Koefoed
Hansen, Adrian Mackenzie, and others in audiences at
Goldsmiths and Aarhus Universities for their feedback.

Dourish 9



Jenna Burrell kindly shared an early copy of her paper on
algorithmic opacity. Much of my thinking on this topic has
developed in conversation with Tarleton Gillespie, Scott

Mainwaring, Bill Maurer, Helen Nissenbaum, Phoebe
Sengers, Nick Seaver, Malte Ziewitz, and other collaborators
in the Intel Science and Technology Center for Social
Computing. Anonymous reviewers for the journal provided

invaluable feedback that has improved the paper
considerably.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: in part by the National Science Foundation under

awards 1525861 and 1556091.

References

Ananny M (2016) Toward an ethics of algorithms:

Convening, observation, probability, and timeliness.

Science, Technology & Human Values 41(1): 93–117.

Barad K (2007) Meeting the Universe Halfway: Quantum

Physics and the Entanglement of Matter and Meaning.

Durham, NC: Duke University Press.
Barocas S (2014) Panic Inducing: Data Mining, Fairness, and

Privacy, PhD Thesis, New York University, NY.

Belluck P (2015) Chilly at work? Office formula was devised

for men. New York Times, 3 August. Available at: http://

www.nytimes.com/2015/08/04/science/chilly-at-work-a-

decades-old-formula-may-be-to-blame.html (accessed 5

December 2015).

Berry D (2011) The Philosophy of Software: Code and

Mediation in the Digital Age. Basingstoke, UK: Palgrave

Macmillan.
Boellstorff T and Maurer B (eds) (2015) Data, Now Bigger

and Better! Chicago, IL: Prickly Paradigm Press.
Buenza D and Millo Y (2013) Folding: Integrating algorithms

into the floor of the New York Stock Exchange. Working

paper, Social Science Research Network (SSRN).
Burrell J (2016) How the machine ‘thinks’: Understanding

opacity in machine learning algorithms. Big Data and

Society 3(1): 1–12.

Chun W (2008) On ‘‘sourcery’’, or code as fetish. Configurations

16(3): 299–324.
Cox G (2012) Speaking Code: Coding as Aesthetic and

Political Expression. Cambridge, MA: MIT Press.
Curry M (1998) Digital Places: Living with Geographical

Information Technologies. London, UK: Routledge.
Dourish P (2014) NoSQL: The shifting materialities of data-

base technology. Computational Culture 4.
Dourish P (2015) Packets, protocols, and proximity: The mate-

rialities of internet routing. In: Parks and Starosielski (eds)

Signal Traffic: Critical Studies of Media Infrastructures.

Champaign, IL: University of Illinois Press, pp. 183–204.

Dourish P and Mazmanian M (2013) Media as material:
Information representations as material foundations for
organizational practice. In: Carlile, Nicolini, Langley,

et al. (eds) How Matter Matters: Objects, Artifacts, and
Materiality in Organization Studies. Oxford, UK: Oxford
University Press, pp. 92–118.

Durumeric Z, Kasten J, Adrian D, et al. (2014) The matter of

heartbleed. In: Proceedings of ACM internet measurement
conference IMC’14, Vancouver, BC, Canada, pp. 475–488.

Edwards P (2010) A Vast Machine: Computer Models,

Climate Data, and the Politics of Global Warming.
Cambridge, MA: MIT Press.

Edwards P, Mayernik M, Batcheller A, et al. (2011) Science

friction: Data, metadata, and collaboration. Social Studies
of Science 41(5): 667–690.

Fuller M (2008) Software Studies: A Lexicon. Cambridge,

MA: MIT Press.
Galloway A (2004) Protocol: How Control Exists after

Decentralization. Cambridge, MA: MIT Press.
Gillespie T (2011) Can an algorithm be wrong? Available at:

http://culturedigitally.org/2011/10/can-an-algorithm-be-
wrong/ (accessed 5 December 2015).

Gillespie T (2012) The relevance of algorithms. In: Gillespie

T, Boczkowski P and Foot K (eds) Media Technologies:
Essays on Communication, Materiality, and Society.
Cambridge, MA: The MIT Press.

Glaser V (2014) Enchanted algorithms: How organizations
use algorithms to automate decision-making routines. In:
Proceedings of the Annual Meeting of the Academy of
Management, Philadelphia, PA.

Goodman B and Flaxman S (2016) EU regulations on algo-
rithmic decision-making and a ‘‘Right to Explanation’’.
In: International conference on machine learning workshop

on human interpretability in machine learning (WHI 2016),
June, New York, NY, pp. 26–30.

Graham SDN and Wood D (2003) Digitizing surveillance:

Categorization, space, inequality. Critical Social Policy
23(2): 227–248.

Gusterson H (2001) The virtual nuclear weapons laboratory

in the new world order. American Ethnologist 28(2):
417–437.

Gusterson H (2008) Nuclear futures: Anticipating knowledge,
expert judgment and the lack that cannot be filled. Science

and Public Policy 35(8): 551–560.
Hansel S (2007) Google answer to filling jobs is an algorithm.

New York Times, 3 January. Available at: http://www.

nytimes.com/2007/01/03/technology/03google.html
(accessed 5 December 2015).

Introna LD (2016) Algorithms, governance, and governmen-

tality: On governing academic writing. Science, Technology
& Human Values 41(1): 17–49.

Jacobson V (1988) Congestion avoidance and control.
In: Proceedings of ACM symposium on communications

architectures and protocols SIGCOMM’88, Stanford, CA,
pp. 314–329.

Kirschenbaum M (2008) Mechanisms: New Media and the

Forensic Imagination. Cambridge, MA: MIT Press.
Kitchin R (2014) The Data Revolution: Big Data, Open Data,

Data Infrastructures and Their Consequences. London,

UK: Sage.

10 Big Data & Society

http://www.nytimes.com/2015/08/04/science/chilly-at-work-a-decades-old-formula-may-be-to-blame.html
http://www.nytimes.com/2015/08/04/science/chilly-at-work-a-decades-old-formula-may-be-to-blame.html
http://www.nytimes.com/2015/08/04/science/chilly-at-work-a-decades-old-formula-may-be-to-blame.html
http://culturedigitally.org/2011/10/can-an-algorithm-be-wrong/
http://culturedigitally.org/2011/10/can-an-algorithm-be-wrong/
http://www.nytimes.com/2007/01/03/technology/03google.html
http://www.nytimes.com/2007/01/03/technology/03google.html


Livingstone E (1986) The Ethnomethodological Foundations of
Mathematics. Boston, MA: Routledge & Kegan Paul.

Mackenzie A (2005) Protocols and the irreducible traces of

embodiment: The Viterbi algorithm and the mosaic of
machine time. In: Hassan (ed) 24/7: Time and
Temporality in the Network Society. Stanford, CA:
Stanford University Press, pp. 89–108.

Mackenzie A (2006) Cutting Code: Software and Sociality.
Pieterlen, Switzerland: Peter Lang International
Academic Publishers.

Mackenzie A (2015) The production of prediction: What does
machine learning want? European Journal of Cultural
Studies 18(4–5): 429–445.

Manovich L (2001) The Language of New Media. Cambridge,
MA: MIT Press.

Manovich L (2013) Software Takes Command. London, UK:

Bloomsbury.
Montford N and Bogost I (2009) Racing the Beam: The Atari

Video Computer System. Cambridge, MA: MIT Press.
Montford N, Baudoin P, Bell J, et al. (2012) 10 PRINT

CHR$(205.5þRND(1)); : GOTO 10. Cambridge, MA:
MIT Press.

Neff G and Nafus D (2016) The Quantified Self. Cambridge,

MA: MIT Press.
Neyland D (2016) Bearing account-able witness to the ethical

algorithmic system. Science, Technology & Human Values

41(1): 50–76.

Pasquale F (2015) The Black Box Society: The Secret
Algorithms that Control Money and Information.
Cambridge, MA: Harvard University Press.

Rosenblat A and Stark L (2016) Uber’s drivers: Information
asymmetries and control in dynamic work. International
Journal of Communication 10: 3758–3784.

Sandvig C, Hamilton K, Karahalios K, et al. (2014) Auditing

algorithms: Research methods for detecting discrimination
on internet platforms. In: Annual Meeting of the
International Communication Association. Seattle, WA,

pp. 1–23.
Seaver N (2015) Working with algorithms: Plans and mess. In:

Kai Franz (ed) Serial Nature. Stuttgart: Edition Solitude.

Singer N (2014) The scoreboards where you can’t see your
score. New York Times, 27 December. Available at: http://
www.nytimes.com/2014/12/28/technology/the-scoreboa

rds-where-you-cant-see-your-score.html (accessed 5
December 2015).

Wirth N (1975) AlgorithmsþData Structures¼Programs.
Englewood Cliffs, NJ: Prentice-Hall.

Zarsky T (2016) The trouble with algorithmic decisions:
An analytic road map to examine efficiency and fairness
in automated and opaque decision making. Science,

Technology & Human Values 41(1): 118–132.
Ziewitz M (2015) Governing algorithms: Myth, mess, and

methods. Science, Technology & Human Values 41(4): 3–

16.

Dourish 11

http://www.nytimes.com/2014/12/28/technology/the-scoreboards-where-you-cant-see-your-score.html
http://www.nytimes.com/2014/12/28/technology/the-scoreboards-where-you-cant-see-your-score.html
http://www.nytimes.com/2014/12/28/technology/the-scoreboards-where-you-cant-see-your-score.html

