Teknillinen korkeakoulu

Exercise 10

Power systems

Question 1

A three-phase power line consists of three parallel conductors in the same horizontal plane. The two outer conductors are each 1 m from the center conductor. If the conductor diameter is 6 mm , calculate the average inductance per phase of a $1 \mathbf{k m}$ length of the line. Assume the expression for the inductance per meter of length.

Question 2

In a three-core cable, the capacitance between the three cores short-circuited together and the sheath is $0.87 \mu \mathrm{~F} / \mathrm{km}$, and that between two cores connected together to with the sheath and the third core is $0.84 \mu \mathrm{~F} / \mathrm{km}$. Determine the MVA required to keep 16 km of this cable charged when the supply is 33 kV , three phase, 50 Hz .

Question 3

An AAC is composed of 37 strands, each having a diameter of 0.333 cm . Compute the dc resistance in ohms per kilometer at $75^{\circ} \mathrm{C}$. Assume that the increase in resistance due to spiraling is 2%.

Use
resistivity for aluminum:
$0.0283 \Omega \mathrm{~mm}^{\wedge} 2 / \mathrm{m}$ at $20^{\circ} \mathrm{C}$
temperature dependence:
$0.00403 /{ }^{\circ} \mathrm{C}$

Question 4

A three-phase $60-\mathrm{Hz}$ line has flat horizontal spacing. The conductors have an outside diameter of 3.28 cm with 12 m between conductors. Determine the capacitive reactance to neutral in ohm-meters and the capacitive reactance of the line in ohms if its length is 200 km . Presume that the distance to ground is much larger than the distance between conductors.

