

Exercise Session 3

Power systems

Transform load \underline{S} =(200 + j150) kVA into equivalent resistance and reactance which are connected:

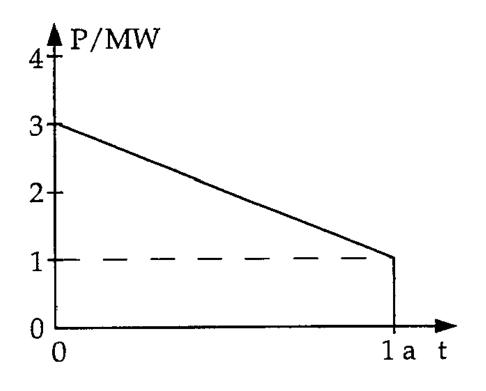
- in series
- in parallel

Voltage is 20 kV.

Question 2

• A certain load curve can be presented with the following equation:

$$P(t) = \left(1 - 0.5 \sin\left(\frac{t}{12 \text{ months}}\pi\right)\right) \text{MW}$$


Calculate:

- a) Annual energy
- b) mean power for one year P_k
- c) load factor
- d) load duration time t_k

Question 3

At the end of a three-phase line the voltage is 20 kV. The line has following properties: resistance 0.8 Ω and reactance 0.6 Ω per phase. The load at the end of the line has a load duration curve as shown in the picture below. The power factor of the load is constant $\cos \varphi = 0.8_{ind}$. Calculate:

- a) active power losses P_{hmax} and P_{hmin}
- b) reactive power losses Q_{hmax} and Q_{hmin}
- c) energy losses $W_{\rm h}$

Question 4

The variation of load (*P*) with time (*t*) in a power supply system is given by the expression:

$$P(t) = 4000 + 8t - 0.00091t^{2} (kW)$$

where *t* is in hours over a total period of one year.

This load is supplied by three 10-MW generators and it is advantageous to fully load machine before connecting the others.

Determine:

- a) the load factor on the system as a whole;
- b) the total magnitude of installed load if the diversity factor is equal to 3;
- c) the minimum number of hours each machine is in operation;
- d) the approximate peak magnitude of installed load capacity to be cut off to enable only two generators to be used.