Teknillinen korkeakoulu

Exercise 10

Power systems

Question 1

A three-phase power line consists of three parallel conductors in the same horizontal plane. The two outer conductors are each 1 m from the center conductor. If the conductor diameter is 6 mm , calculate the average inductance per phase of a $1 \mathbf{k m}$ length of the line. Assume the expression for the inductance per meter of length.

Question 1

A three-phase power line consists of three parallel conductors in the same horizontal plane. The two outer conductors are each 1 m from the center conductor. If the conductor diameter is 6 mm , calculate the average inductance per phase of a 1 km length of the line. Assume the expression for the inductance per meter of length.

$$
\begin{aligned}
& \mathrm{L}=\frac{\mu_{0}}{2 \pi}\left[\frac{1}{4}+\ln \frac{\mathrm{d}}{\mathrm{r}}\right] \\
& \mu_{0}=4 \pi \cdot 10^{-7} \mathrm{H} / \mathrm{m}
\end{aligned}
$$

If the distances between the phases are not equal:

$$
d_{e q}=\sqrt[3]{d_{12} \cdot d_{23} \cdot d_{31}}
$$

Question 1

Inductance, when conductor diameter is 6 mm

$$
d_{e q}=d=\sqrt[3]{1 \times 1 \times 2} m=\sqrt[3]{2} m
$$

$$
r=\frac{d_{c}}{2}=\frac{6 \mathrm{~mm}}{2}=3 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m}
$$

$$
\begin{aligned}
& L=\frac{\mu_{0}}{2 \pi}\left[\frac{1}{4}+\ln \frac{d}{r}\right] \\
& \mu_{0}=4 \pi \cdot 10^{-7} \mathrm{H} / \mathrm{m}
\end{aligned}
$$

If the distances between the phases are not equal:

$$
\mathrm{d}_{\mathrm{eq}}=\sqrt[3]{\mathrm{d}_{12} \cdot \mathrm{~d}_{23} \cdot \mathrm{~d}_{31}}
$$

$L=2 \times 10^{-7}\left[\frac{1}{4}+\ln \left(\frac{d}{r}\right)\right] \frac{\mathrm{H}}{\mathrm{m}}$
1 km :

$$
L=2 \times 10^{-7}\left[\frac{1}{4}+\ln \left(\frac{\sqrt[3]{2}}{3 \times 10^{-3}}\right)\right] \frac{\mathrm{H}}{\mathrm{~m}} \times 1000 \mathrm{~m}
$$

$$
=\underline{\underline{1.26 m H}}
$$

Question 2

In a three-core cable, the capacitance between the three cores short-circuited together and the sheath is $0.87 \mu \mathrm{~F} / \mathrm{km}$, and that between two cores connected together to with the sheath and the third core is $0.84 \mu \mathrm{~F} / \mathrm{km}$. Determine the MVA required to keep 16 km of this cable charged when the supply is 33 kV , three phase, 50 Hz .

Question 2

MVA for charging 16 km of cable with 33 kV supply

Three-core cable:

1)

2)

1) Capacitance between the three cores short-circuited together and the sheath is 0.87 $\mu \mathrm{F} / \mathrm{km}$:

$$
C_{A}=0.87 \frac{\mu \mathrm{~F}}{\mathrm{~km}}=\underbrace{3 \cdot C_{1}}_{\text {parallel }} \Rightarrow C_{1}=\frac{1}{3} C_{A}=0.29 \frac{\mu \mathrm{~F}}{\mathrm{~km}}
$$

2) Between two cores connected together with the sheath and the third core is $0.84 \mu \mathrm{~F} / \mathrm{km}$:

$$
\begin{aligned}
& C_{B}=0.84 \frac{\mu \mathrm{~F}}{\mathrm{~km}}=2 \cdot C_{2}+C_{1} \\
& \Rightarrow C_{2}=\frac{1}{2}\left(C_{B}-C_{1}\right)=\frac{1}{2}(0.84-0.29) \frac{\mu \mathrm{F}}{\mathrm{~km}}=0.275 \frac{\mu \mathrm{~F}}{\mathrm{~km}}
\end{aligned}
$$

Question 2

MVA for charging 16 km of cable with 33 kV supply

We can make a delta-star transformation for easier solution:

$$
\begin{aligned}
& Q_{\Delta}=3 U I_{\Delta} \underbrace{\sin \varphi}_{=-1 \text { (cap.) }}=-3 U \frac{U}{Z_{\Delta}}=-3 U^{2} Y_{\Delta} \\
& Q_{\lambda}=3 \frac{U}{\sqrt{3}} I_{\lambda} \underbrace{\sin \varphi}_{=-1 \text { (cap.) }}=-3\left(\frac{U}{\sqrt{3}}\right)^{2} \frac{1}{Z_{\lambda}}=-U^{2} Y_{\lambda} \stackrel{\substack{\text { power } \\
\text { equilibrium } \\
=}}{\text { a }} Q_{\Delta} \\
& \Rightarrow Y_{\lambda}=3 Y_{\Delta}
\end{aligned}
$$

Question 2

MVA for charging 16 km of cable with 33 kV supply

$$
C_{1}=0.29 \frac{\mu \mathrm{~F}}{\mathrm{~km}} \quad C_{2}=0.275 \frac{\mu \mathrm{~F}}{\mathrm{~km}}
$$

Something to go after...
From the sheats/neutrals perspective:

Positive sequence C :

$$
C=C_{10}+3 C_{12}
$$

Cap. per phase:

For a three-phase system the apparent power is:

$$
C=C_{1}+3 C_{2}=(0.29+3 \times 0.275) \frac{\mu \mathrm{F}}{\mathrm{~km}}=1.115 \frac{\mu \mathrm{~F}}{\mathrm{~km}}
$$

$$
\begin{aligned}
& S=3\left(\frac{U}{\sqrt{3}}\right)^{2} \frac{1}{Z}=Y U^{2}=\omega C U^{2}=2 \pi f C U^{2}=2 \pi \times 50 \times 17.84 \times 10^{-6} \times\left(33 \times 10^{3}\right)^{2} \mathrm{VA} \\
& =6.1 \mathrm{MVA}
\end{aligned}
$$

Question 3

An AAC is composed of 37 strands, each having a diameter of 0.333 cm . Compute the dc resistance in ohms per kilometer at $75^{\circ} \mathrm{C}$. Assume that the increase in resistance due to spiraling is 2%.

Use
resistivity for aluminum:
$0.0283 \Omega \mathrm{~mm}^{\wedge} 2 / \mathrm{m}$ at $20^{\circ} \mathrm{C}$
temperature dependence:
$0.00403 /{ }^{\circ} \mathrm{C}$

Question 3 dc resistance

An AAC is composed of 37 strands, each having a diameter of 0.333 cm . Compute the dc resistance in ohms per kilometer at $75^{\circ} \mathrm{C}$. Assume that the increase in resistance due to spiraling is 2%.

AAC is an all-aluminum conductor

$$
\mathrm{R}=\frac{\rho}{\mathrm{A}} \cdot 1
$$

Resistivity $\rightarrow \rho=2.83 \times 10^{-8} \Omega \mathrm{~m}$ at $20^{\circ} \mathrm{C}$

$$
\text { and } \quad \alpha=0.00403 \text { per }{ }^{\circ} \mathrm{C}
$$

Diameter of a strand is $d=0.333 \mathrm{~cm}=0.00333 \mathrm{~m}$
Total area of the conducting material $\rightarrow \quad A=37 \times \frac{\pi}{4}(0.00333)^{2}=3.222 \times 10^{-4} \mathrm{~m}^{2}$

$$
\begin{aligned}
& R_{20}=\rho \frac{l}{A} \\
& \Rightarrow \\
& \frac{R_{20}}{l}=\frac{\rho}{A}=\frac{2.83 \times 10^{-8} \Omega \mathrm{~m}}{3.222 \times 10^{-4} \mathrm{~m}^{2}} \times 1000 \\
&=0.0878 \frac{\Omega}{\mathrm{~km}}
\end{aligned}
$$

Question 3 dc resistance

An AAC is composed of 37 strands, each having a diameter of 0.333 cm . Compute the dc resistance in ohms per kilometer at $75^{\circ} \mathrm{C}$. Assume that the increase in resistance due to spiraling is 2%.

$$
\frac{R_{20}}{l}=0.0878 \frac{\Omega}{\mathrm{~km}}
$$

Spiraling effect:

$$
\frac{R_{20}^{\prime}}{l}=1.02 \cdot \frac{R_{20}}{l}=1.02 \cdot 0.0878 \frac{\Omega}{\mathrm{~km}}=0.0896 \frac{\Omega}{\mathrm{~km}}
$$

Zero at DC
Total resistance :

$$
\mathrm{R}=\left[1+\alpha\left(\vartheta-20^{\circ} \mathrm{C}\right)\right]\left(\mathrm{R}_{20}+\Delta \mathrm{R}\right)
$$

$$
\begin{aligned}
\frac{R_{75}}{l} & =\frac{R_{20}^{\prime}}{l}[1+\alpha(75-20)] \\
& =0.0896 \times[1+0.00403 \times(75-20)]=0.109 \frac{\Omega}{\mathrm{~km}}
\end{aligned}
$$

Question 4

A three-phase $60-\mathrm{Hz}$ line has flat horizontal spacing. The conductors have an outside diameter of 3.28 cm with 12 m between conductors. Determine the capacitive reactance to neutral in ohm-meters and the capacitive reactance of the line in ohms if its length is 200 km . Presume that the distance to ground is much larger than the distance between conductors.

Question 4

Capacitances of an OH -line

$r=$ conductor radius
$h=$ geometric mean height

$$
h=\sqrt[3]{h_{1} \cdot h_{2} \cdot h_{3}}
$$

a, A : geometric mean distances

$$
\mathrm{a}=\sqrt[3]{\mathrm{a}_{12} \cdot \mathrm{a}_{23} \cdot \mathrm{a}_{13}} ; \mathrm{A}=\sqrt[3]{\mathrm{A}_{12} \cdot \mathrm{~A}_{23} \cdot \mathrm{~A}_{13}}
$$

Positive sequence capacitance $C=C_{0}+3 C_{k}$

$$
\mathrm{c}=\frac{2 \pi \varepsilon_{0}}{\ln \frac{2 \mathrm{ha}}{\mathrm{rA}}}
$$

Zero sequence capacitance C_{0}

$$
\mathrm{c}=\frac{2 \pi \varepsilon_{0}}{\ln \frac{2 h}{r}\left(\frac{A}{r}\right)^{2}}
$$

$\varepsilon_{0}=$ vacuum permittivity $8,84 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}$

Question 4

$$
\mathrm{c}=\frac{2 \pi \varepsilon_{0}}{\ln \frac{2 \mathrm{ha}}{\mathrm{rA}}}
$$

$r=$ conductor radius

$h=$ geometric mean height

$$
h=\sqrt[3]{h_{1} \cdot h_{2} \cdot h_{3}}
$$

a, A : geometric mean distances

$$
a=\sqrt[3]{a_{12} \cdot a_{23} \cdot a_{13}} ; A=\sqrt[3]{A_{12} \cdot A_{23} \cdot A_{13}}
$$

$$
C\left[\frac{\mathrm{~F}}{\mathrm{~m}}\right]=\frac{2 \pi \varepsilon_{0}}{\ln \left(\frac{2 h a}{r A}\right)}=\frac{2 \pi \varepsilon_{0}}{\ln \left(\frac{a}{r}\right)-\ln \left(\frac{A}{2 h}\right)}
$$

When the distance to ground (h) is much larger than the distance between the conductors, the total distances of $2 h$ and A are nearly equal. That is to say:

$$
C\left[\frac{\mathrm{~F}}{\mathrm{~m}}\right]=\frac{2 \pi \varepsilon_{0}}{\ln \left(\frac{a}{r}\right)-\ln \left(\frac{A}{2 h}\right)} \approx \frac{2 \pi \varepsilon_{0}}{\ln \left(\frac{a}{r}\right)-\ln (1)}=\frac{2 \pi \varepsilon_{0}}{\ln \left(\frac{a}{r}\right)}
$$

Question 4

$d=3.28 c m=0.0328 m \Rightarrow r=0.0164 m$
$D=12 m$
$l=200 \mathrm{~km}$

A three-phase $60-\mathrm{Hz}$ line has flat horizontal spacing. The conductors have an outside diameter of 3.28 cm with 12 m between conductors. Determine the capacitive reactance to neutral in ohm-meters and the capacitive reactance of the line in ohms if its length is 200 km . Presume that the distance to ground is much larger than the distance between conductors.

$$
D_{e q}=\sqrt[3]{D_{a b} \times D_{b c} \times D_{a c}}=\sqrt[3]{12 \times 12 \times 24} \mathrm{~m}=15.12 \mathrm{~m}
$$

The line-to-neutral capacitance per meter and capacitive reactance in ohm-meters:

$$
C\left[\frac{\mathrm{~F}}{\mathrm{~m}}\right]=\frac{2 \pi \varepsilon_{0}}{\ln \left(\frac{D_{e q}}{}\right)}=\frac{10^{-9}}{18 \cdot \ln \left(\frac{15.12}{\mathrm{~m}}\right)}=8.138 \cdot 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}} \quad \varepsilon_{0}=\frac{10^{-9}}{36 \pi}\left[\frac{\mathrm{~F}}{\mathrm{~m}}\right]=8.842 \cdot 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}}
$$

$$
\Rightarrow X_{C}=\frac{1}{\omega C}=\frac{\ln \left(\frac{D_{e q}}{r}\right)}{2 \pi \times 60 \times 2 \pi \times \frac{10^{-9}}{36 \pi}}=4.77 \times 10^{7} \times \ln \left(\frac{D_{e q}}{r}\right)=\underline{\underline{3.256 \times 10^{8} \Omega \cdot \mathrm{~m}}}
$$

A three-phase $60-\mathrm{Hz}$ line has flat horizontal spacing. The conductors have an outside diameter of 3.28 cm with 12 m
Question 4 between conductors. Determine the capacitive reactance to neutral in ohm-meters and the capacitive reactance of the line in ohms if its length is 200 km . Presume that the distance to
$d=3.28 c m=0.0328 m \quad \Rightarrow \quad r=0.0164 m$ ground is much larger than the distance between conductors.
$D=12 m$
$l=200 \mathrm{~km}$

Line capacitance and reactance for the 200 km line:

$$
\begin{aligned}
& C=8.138 \cdot 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}} \times \frac{1000 \mathrm{~m}}{\mathrm{~km}} \times 200 \mathrm{~km}=1.63 \mu \mathrm{~F} \\
& \Rightarrow X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi \times 60 \times 1.63 \times 10^{-6}}=1627 \Omega
\end{aligned}
$$

