Aalto-yliopisto
Teknillinen korkeakoulu

Exercise Session 4

Power systems

Question 1

- Calculate the maximum active power $\mathrm{P}_{\max }$ that can be transferred from busbar 1 to busbar 2 using the voltages shown in the picture.

Question 1

The equivalent scheme of the line, using reactances for P.U. computation.

Selecting:

$$
S_{b}=16 \mathrm{MVA}
$$

$$
U_{b}=110 \mathrm{kV}
$$

$$
u_{1}=\frac{U_{1}}{U_{b} \cdot\left(\frac{U_{N 2}}{U_{N 1}}\right)}=\frac{10.0 \mathrm{kV}}{110 \mathrm{kV} \cdot\left(\frac{10.5}{115}\right)} \approx 0.996
$$

$$
u_{2}=\frac{U_{2}}{U_{b}\left(\frac{U_{N 2}}{U_{N 1}}\right)}=\frac{21.0 \mathrm{kV}}{110 \mathrm{kV} \cdot\left(\frac{21}{110}\right)} \approx 1.000
$$

Question 1

Selecting:

$$
\begin{aligned}
& S_{b}=16 \mathrm{MVA} \\
& U_{b}=110 \mathrm{kV}
\end{aligned}
$$

$$
\begin{aligned}
& x_{m 1}=Z_{k} \cdot \frac{U_{N}^{2}}{S_{N}} / \frac{U_{b}^{2}}{S_{b}}=0.1 \cdot \frac{(115 \mathrm{kV})^{2}}{10 \mathrm{MVA}} / \frac{(110 \mathrm{kV})^{2}}{16 \mathrm{MVA}}=0.175 \\
& x_{m 2}=Z_{k} \cdot \frac{U_{N}^{2}}{S_{N}} / \frac{U_{b}^{2}}{S_{b}}=0.1 \cdot \frac{(110 \mathrm{kV})^{2}}{16 \mathrm{MVA}} / \frac{(110 \mathrm{kV})^{2}}{16 \mathrm{MVA}}=0.100
\end{aligned}
$$

$$
x_{j}=\frac{X_{j}}{\frac{U_{b}^{2}}{S_{b}}}=\frac{40 \Omega}{\frac{(110 \mathrm{kV})^{2}}{16 \mathrm{MVA}}} \approx 0.053
$$

Power-angle equation:

Question 1

$$
P_{1}=P_{2}=\frac{U_{1} U_{2}}{X} \cdot \sin \delta
$$

The highest power that can be transmitted:

$$
\begin{gathered}
p=\frac{u_{1} u_{2}}{x_{m 1}+x_{j}+x_{m 2}} \cdot \sin \delta \quad \delta=90^{\circ} \quad(\sin \delta=1) \\
p_{\max }=\frac{u_{1} u_{2}}{x_{m 1}+x_{j}+x_{m 2}}=\frac{0.996 \cdot 1.000}{0.175+0.100+0.053} \approx 3.038 \\
\underline{\underline{P_{\max }}}=p_{\max } \cdot S_{b}=3.038 \cdot 16 \mathrm{MVA} \approx \underline{\underline{48.60 \mathrm{MW}}}
\end{gathered}
$$

Question 2

- The power that can be transferred by a line is, usually, limited by the reactive power resources. A line has a series reactance $\mathrm{X}=100 \Omega$ and the voltage at the beginning of the line is $U_{1}=115 \mathrm{kV}$. The reactive power at the end of the line is $Q_{2}=0$. Derive the expressions for power transferred and reactive power Q_{1} as the function of voltage angle δ. How much smaller is the maximum transferred power compared to a case where the necessary reactive power could be fed to the end of the line?

Question 2

Power-angle equation:
$\left\{\begin{array}{c}P_{1}=P_{2}=\frac{U_{1} U_{2}}{X} \cdot \sin \delta \\ Q_{1}=\frac{U_{1}^{2}}{X}-\frac{U_{1} U_{2}}{X} \cdot \cos \delta\end{array}\right.$

$$
Q_{2}=\frac{U_{1} U_{2}}{X} \cdot \cos \delta-\frac{U_{2}^{2}}{X}
$$

$$
Q_{2}=0 \quad \Leftrightarrow \quad U_{2}=U_{1} \cos \delta
$$

Question 2

$$
Q_{2}=0 \Leftrightarrow U_{2}=U_{1} \cos \delta
$$

$$
\sin (2 \delta)=2 \sin (\delta) \cos (\delta)
$$

$$
P_{1}=P_{2}=\frac{U_{1} U_{2}}{X} \cdot \sin \delta=\frac{U_{1}^{2}}{X} \cdot \sin \delta \cdot \cos \delta=\frac{U_{1}^{2}}{2 X} \cdot \sin 2 \delta=\frac{(115 \mathrm{kV})^{2}}{2 \cdot 100 \Omega} \cdot \sin 2 \delta
$$

$\underline{\underline{P_{1}=P_{2} \approx 66.1 \mathrm{MW} \cdot \sin 2 \delta}}$

$$
\sin ^{2} \delta+\cos ^{2} \delta=1
$$

$$
Q_{1}=\frac{U_{1}^{2}}{X}-\frac{U_{1} U_{2}}{X} \cdot \cos \delta=\frac{U_{1}^{2}}{X} \cdot\left(1-\cos ^{2} \delta\right)=\frac{U_{1}^{2}}{X} \cdot \sin ^{2} \delta=\frac{(115 \mathrm{kV})^{2}}{100 \Omega} \cdot \sin ^{2} \delta
$$

$\underline{\underline{Q_{1}} \approx 132.3 \mathrm{Mvar} \cdot \sin ^{2} \delta}$

Question 2

$$
\left.\begin{array}{c}
P_{1}=P_{2}=\frac{U_{1}^{2}}{2 X} \cdot \sin 2 \delta \quad Q_{1}=\frac{U_{1}^{2}}{X} \cdot \sin ^{2} \delta \quad Q_{2}=0 \quad \Leftrightarrow \quad P_{\max }=\frac{U_{1}^{2}}{2 X} \\
P=\frac{U_{1} U_{2}}{X} \cdot \sin \delta=\frac{U_{1}^{2}}{X} \cdot \sin \delta \quad Q_{2} \neq 0, \underbrace{U_{2}=U_{1}}_{\text {ASSUMPTION }} \Leftrightarrow P_{\max }=\frac{U_{1}^{2}}{X}
\end{array}\right\} \Rightarrow \xlongequal{P_{\max } 50 \% \text { smaller }}
$$

Question 3: (for help, see Power System Analysis by

Grainger, ch. 16 or other book)

- A generator having $H=6.0 \mathrm{MJ} / \mathrm{MVA}$ is delivering power of 1.0 per unit to an infinite bus through a purely reactive network when the occurrence of a fault reduces the generator output to zero. The maximum power that could be delivered is 2.5 per unit. When the fault is cleared, the original network conditions again exist. Determine the critical angle and critical clearing time.

Hint: For clearing time, $H=W k / P \& W k=\frac{1}{2} J \omega^{2}$ if using equation from lecture slides

Question 3: critical clearing angle

$$
\begin{aligned}
& P_{i}=P_{\max } \sin \delta=2.5 \sin \delta=1.0 \\
& \Rightarrow \delta_{0}=23.58^{\circ}=0.4115 \mathrm{rad} \\
& \delta_{m}=\pi-\delta_{0}=154.42^{\circ}
\end{aligned}
$$

A1 $=\mathrm{A} 2$, Stability Criterion
$A_{1}=P_{i} \times\left(\delta_{c r}-\delta_{0}\right)=A_{2}=\int_{\delta_{c r}}^{\delta_{m}} P_{\text {max }} \sin \delta d \delta-P_{i} \times\left(\delta_{m}-\delta_{c r}\right)$

$\Leftrightarrow 1 \times\left(\delta_{c r}-\delta_{0}\right)=\int_{\delta_{c r}}^{\delta_{m}} P_{\max } \sin \delta d \delta-1 \times\left(\delta_{m}-\delta_{c r}\right)$
$\Leftrightarrow-\delta_{0}=-P_{\max } \cos \delta_{m}+P_{\text {max }} \cos \delta_{c r}-\delta_{m}$
$\Leftrightarrow-\delta_{0}=-P_{\text {max }} \cos \delta_{m}+P_{\text {max }} \cos \delta_{c r}-\left(\pi-\delta_{0}\right)$
$\Leftrightarrow \pi-2 \delta_{0}+P_{\text {max }} \cos \delta_{m}=P_{\text {max }} \cos \delta_{c r}$
$\cos \delta_{c r}=\frac{P_{\text {max }} \cos \delta_{m}+\pi-2 \delta_{0}}{P_{\text {max }}}$
$\delta_{c r}=\arccos \left(\frac{2.5 \cos 154.42^{\circ}+\pi-2 \times 0.4115}{2.5}\right)=\arccos (0.00274)=89.84^{\circ}=1.56 \mathrm{rad}$

Question 3: critical clearing time

$$
\begin{aligned}
\delta_{0} & =23.58^{\circ}=0.4115 \mathrm{rad} \\
\delta_{c r} & =89.84^{\circ}=1.56 \mathrm{rad} \\
t & =\sqrt{2 \frac{\mathrm{~J} \omega}{\mathrm{P}_{\mathrm{m}}}\left(\delta^{\prime}-\delta_{0}^{\prime}\right)} \\
H & \text { From lecture slides } \\
H & \frac{W_{k}}{P_{m}}=\frac{\frac{1}{2} J \omega^{2}}{P_{m}}
\end{aligned} \begin{aligned}
& \text { Multiply by 4 and } \\
& \frac{4 H}{\omega}=2 \frac{\mathrm{~J} \omega}{\mathrm{P}_{\mathrm{m}}}
\end{aligned} \quad \begin{aligned}
& \text { Divide by } \omega
\end{aligned}
$$

$$
t_{c r}=\sqrt{\frac{4 H\left(\delta_{c r}-\delta_{0}\right)}{\omega_{s}}}=\sqrt{\frac{4 \times 6(1.56-0.4115)}{2 \times \pi \times 50 H z \times 1}}=\underline{\underline{0.296 s}}
$$

Question 4

- A $60-\mathrm{Hz}$ generator is supplying 60% of $\mathrm{P}_{\max }$ to an infinite bus through a reactive network. A fault occurs which increases the reactance of the network between the generator internal voltage and the infinite bus by 400%. When the fault is cleared, the maximum power that can be delivered is 80% of the original maximum value. Determine the critical clearing angle for the condition described.

Question 4: (for help, see Power System Analysis by Grainger, ch. 16

or other book)

Power-angle curve A before a fault, B during the fault, and C after the fault such that $A=P_{\text {max }} \sin \delta$, $B=k_{1} A$, and $C=k_{2} A$, with $k_{1}<k_{2}$. For stability, we must have area $A_{1}=$ area A_{2}.

$$
k_{1}=\frac{X_{\text {before fault }}}{X_{\text {during fault }}}=\frac{X_{\text {before fault }}}{X_{\text {before fault }}(1.0+4.0)}
$$

$$
k_{2}=\frac{X_{\text {before fault }}}{X_{\text {after fault }}}
$$

Note: picture illustrative - not from the problem

Question 4: Determine the critical clearing angle

In our case:

Before the fault:

$$
P_{i}=P_{\max } \sin \delta_{0}=1.667 \sin \delta_{0}=1.0
$$

$$
\Rightarrow \quad \delta_{0}=36.86^{\circ}=0.643 \mathrm{rad}
$$

During the fault:

$$
\begin{aligned}
& X_{f}^{\prime}=5 X_{f} \Rightarrow P_{\max }^{\prime}=\frac{1.667}{5}=0.333 \\
& k_{1} P_{\max } \sin \delta=0.333 \sin \delta, \quad k_{1}=0.2
\end{aligned}
$$

After the fault:

$$
\begin{aligned}
& P^{\prime \prime}{ }_{\max }=0.8 P_{\max } \\
& k_{2} P_{\max } \sin \delta=1.33 \sin \delta, \quad k_{2}=0.8
\end{aligned}
$$

Question 4: Determine the critical clearing angle

$A=P_{\max } \sin \delta, B=k_{1} A$, and $C=k_{2} A$.
For stability, we must have area $A_{1}=$ area A_{2}.

$$
A_{1}=P_{i} \times\left(\delta_{c r}-\delta_{0}\right)-\int_{\delta_{0}}^{\delta_{c r}} B(\delta) d \delta=P_{\max } \sin \delta_{0} \times\left(\delta_{c r}-\delta_{0}\right)-\int_{\delta_{0}}^{\delta_{c r}} k_{1} P_{\max } \sin \delta d \delta
$$

$=P_{\max }\left(\sin \delta_{0} \times\left(\delta_{c r}-\delta_{0}\right)+\left.k_{1}\right|_{\delta_{0}} ^{\delta_{c r}} \cos \delta\right)=\underline{P_{\max }\left(\sin \delta_{0} \times\left(\delta_{c r}-\delta_{0}\right)+k_{1} \cos \delta_{c r}-k_{1} \cos \delta_{0}\right)}$
$A_{2}=\int_{\delta_{c r}}^{\delta_{m}} C(\delta) d \delta-P_{i} \times\left(\delta_{m}-\delta_{c r}\right)=\int_{\delta_{c r}}^{\delta_{m}} k_{2} P_{\max } \sin \delta d \delta-P_{\max } \sin \delta_{0} \times\left(\delta_{m}-\delta_{c r}\right)$
$=P_{\max }\left(-\left.k_{2}\right|_{\delta_{c r}} ^{\delta_{m}} \cos \delta-\sin \delta_{0} \times\left(\delta_{m}-\delta_{c r}\right)\right)=\underline{P_{\max }\left(k_{2} \cos \delta_{c r}-k_{2} \cos \delta_{m}-\sin \delta_{0} \times\left(\delta_{m}-\delta_{c r}\right)\right)}$
$A_{1}=A_{2}$
$\Rightarrow \cos \delta_{c r}\left(k_{2}-k_{1}\right)=\sin \delta_{0}\left(\delta_{m}-\delta_{0}\right)-k_{1} \cos \delta_{0}+k_{2} \cos \delta_{m}$
$\Leftrightarrow \quad \cos \delta_{c r}=\frac{1}{\left(k_{2}-k_{1}\right)}\left(\sin \delta_{0}\left(\delta_{m}-\delta_{0}\right)-k_{1} \cos \delta_{0}+k_{2} \cos \delta_{m}\right)$

Question 4: Determine the critical clearing angle

$\cos \delta_{c r}=\frac{1}{\left(k_{2}-k_{1}\right)}\left(\sin \delta_{0}\left(\delta_{m}-\delta_{0}\right)-k_{1} \cos \delta_{0}+k_{2} \cos \delta_{m}\right)$

$$
\sin \delta_{0}=k_{2} \sin \left(\pi-\delta_{m}\right)
$$

Using the previously derived equations:

$$
\begin{aligned}
& \sin \delta_{0}=k_{2} \sin \left(\pi-\delta_{m}\right), \delta_{m}=\pi-\arcsin \left(\frac{P_{i}}{k_{2} P_{\max }}\right) \\
& \delta_{m}=180^{\circ}-\arcsin \left(\frac{1.0}{1.33}\right)=131.2^{\circ}=2.290 \mathrm{rad} \\
& \cos \delta_{c r}=\frac{1}{\left(k_{2}-k_{1}\right)}\left(\sin \delta_{0}\left(\delta_{m}-\delta_{0}\right)-k_{1} \cos \delta_{0}+k_{2} \cos \delta_{m}\right) \\
&=\left(\frac{1.0}{0.8-0.2}\right)\left(\sin 36.84^{\circ} \times(2.290-0.643)-0.2 \cos 36.86^{\circ}+0.8 \cos 131.2^{\circ}\right) \\
&=0.500 \\
& \Rightarrow \delta_{c r}=\arccos (0.5)=\underline{\underline{60^{\circ}}}
\end{aligned}
$$

