Teknillinen korkeakoulu

Exercise 5

Power systems

Question 1

- A symmetrical three-phase short circuit occurs on the 22 kV busbars of the circuit shown as a one-line diagram in the figure below. Calculate the fault current and the fault apparent power.

Question 1

1. Selecting base power $S_{b}=100 \mathrm{MVA}$
2. Drawing the equivalent circuit with reactances
3. Calculating Per Unit (p.u.) values for every component
4. Calculating the $S_{s c}$ and $I_{s c}$

$$
S_{b}=100 \mathrm{MVA}
$$

Equivalent circuit:

$$
x_{p . \text {.u. }}=\frac{X}{Z_{b}}=\frac{Z_{k} \frac{U_{n}^{2}}{S_{n}}}{U_{b}^{2}}=Z_{k} \frac{S_{b}}{S_{N}} \frac{U_{n}^{2}}{U_{b}^{2}} \xrightarrow{\text { if } \quad \text { selected } \quad U_{b}=U_{n}} x_{p . u .}=Z_{k} \frac{S_{b}}{S_{n}} \quad \begin{aligned}
& \text { Note: this simplifies } \\
& \text { calculation if } \\
& \text { Un2,t1 }=\text { Unnet2 }
\end{aligned}
$$

Question 1

1. Selecting base power $S_{b}=100 \mathrm{MVA}$

2. Drawing the equivalent circuit with reactances
3. Calculating Per Unit (p.u.) values for every component
4. Calculating the $S_{s c}$ and $I_{s c}$

$$
x_{\text {p.u. }}=Z_{k} \frac{S_{b}}{S_{n}}
$$

Name	Calculation	Reactance
Generator $\left(x_{g}\right)$	$j 0.15 \times 100 / 25$	0.6 p.u.
Transformer $1(11 / 132)\left(x_{t 1}\right)$	$j 0.09 \times 100 / 30$	0.3 p.u.
Transformer $2(132 / 22)\left(x_{t 2}\right)$	$j 0.02 \times 100 / 5$	0.4 p.u.
Line $\left(x_{l}\right)$	$j 0.092 \times 100 / 100$	0.092 p.u

Question 1

1. Selecting base power $S_{b}=100 \mathrm{MVA}$

2. Drawing the equivalent circuit with reactance
3. Calculating Per Unit (p.u.) values for every component

$$
S_{b}=100 \mathrm{MVA}
$$

4. Calculating the $S_{s c}$ and $I_{s c}$

$$
\begin{aligned}
& \text { 4. Calculating the } S_{s c} \text { and } I_{s c} \\
& \text { Equivalent circuit: } \\
& \qquad \begin{array}{l}
x_{T, p . u}=z_{s c, p .4 .}=\frac{Z_{s c}}{Z_{b}}=\frac{\frac{U_{s c}^{2}}{S_{s c}}}{\frac{U_{b}^{2}}{S_{b}}} \\
\rightarrow S_{s c}=\frac{S_{b}}{x_{T}}=\frac{100}{1.392}=71.8 \mathrm{MVA} \\
I_{s c}=\frac{I_{b}}{x_{T}}=\frac{S_{b}}{\sqrt{3 \times U_{b} \times x_{T}}}=\frac{100}{\sqrt{3 \times 22 \times 1.392}}=1.885 \mathrm{kA}
\end{array}
\end{aligned}
$$

Question 2

- Two 100-MVA, 20-kV turbo generators (each of transient reactance 0.2 pu) are connected, each through its own 100MVA, o. 1 pu reactance transformer, to a common $132-\mathrm{kV}$ busbar. From this busbar, a $132-\mathrm{kV}$ feeder, 40 km in length, supplies an $11-\mathrm{kV}$ load through a $132 / 11-\mathrm{kV}$ transformer of 200 MVA rating and reactance 0.1 pu . If a balanced threephase short circuit occurs on the low voltage terminals of the load transformer, determine, using a $100-\mathrm{MVA}$ base, the fault current in the feeder and the rating of a suitable circuit breaker at the load end of the feeder. The feeder impedance per phase is ($0.035+\mathrm{jo} .14$) Ω / km.

Question 2

Question 2

1. Selecting base power $S_{b}=100 \mathrm{MVA}$
2. Drawing the equivalent circuit with reactance
3. Calculating Per Unit (p.u.) values for every component

4. Simplifying the circuit
5. Calculating the $I_{s c}$ and $S_{s c}$

Calculating reactance of the line (feeder): $x_{l}=\frac{z_{l}}{z_{b}}$
Line impedance $Z_{l}=40 *(0.035+j 0.14)=1.4+j 5.6=5.77<76^{\circ} \Omega$
Base impedance $Z_{b}=\frac{U_{b}^{2}}{S_{b}}=\frac{132^{2}}{100}=174.24 \Omega$
Per Unit value $x_{l}=\frac{z_{l}}{z_{b}}=\frac{5.77<76^{\circ}}{174.24}=0.033<76^{\circ} p . u$.

Question 2

3. Calculating Per Unit (p.u.) values for every component 4. Simplifying the circuit
4. Calculating the $I_{s c}$ and $S_{s c}$

$$
x_{\text {p.u. }}=Z_{k} \frac{S_{b}}{S_{n}}
$$

$x_{\text {p.u. }}=Z_{k} \frac{S_{b}}{S_{n}}$

$x_{\text {p.u. }} \quad Z_{k} S_{n}$			$\sim \underbrace{j 0.2} \underbrace{j 0.1}$	0.03
Name	Calculation	Impedance		
Generator 1($x_{g 1}$)	$j 0.20 \times 100 / 100$	j0.2 p.u.	j0.2 j0.1	$\min _{i 0} \min ^{2}$
Generator2($x_{g 2}$)	$j 0.20 \times 100 / 100$	j0.2 p.u.	-	0.0
Transformer $1\left(x_{t 1}\right)$	$j 0.10 \times 100 / 100$	j0.1 p.u.		
Transformer2 $\left(x_{t 2}\right)$	$j 0.10 \times 100 / 100$	j0.1 p.u.	10.3	
Transformer3 $\left(x_{t 3}\right)$	$j 0.10 \times 100 / 200$	j0.05 p.u.	m	
Line(feeder)(x_{l})	Z_{l} / Z_{b}	$\begin{aligned} & 0.033<76^{\circ} \\ & \text { p.u. } \end{aligned}$		$0.0824<84.44^{\circ}$

Question 2

4. Simplifying the circuit
5. Calculating the $I_{s c}$ and $S_{s c}$

Parallel: $x_{e q}=\frac{j 0.3 \times j 0.3}{j 0.3+j 0.3}=j 0.15 p . u$.

$$
\begin{aligned}
& \bar{z}_{T}=0.232<88^{\circ} p . u . \rightarrow z_{T}=0.232 p . u . \\
& I_{s c}=\frac{I_{b}}{z_{T}}=\frac{S_{b}}{\sqrt{3} \times U_{b} \times z_{T}}=\frac{100}{\sqrt{3} \times 11 \times 0.232}=22.62 \mathrm{kA} \\
& S_{s c}=\frac{S_{b}}{z_{T}}=\frac{100}{0.232}=431 \mathrm{MVA}
\end{aligned}
$$

Question 3

- A single line-to-earth fault occurs in a radial transmission system. The following sequences exist between the source of supply (an infinite busbar) of voltage 1 pu to the point of the fault: $\mathrm{Z}_{1}=(0.3+\mathrm{jo.6}) \mathrm{pu}, \mathrm{Z}_{2}=(0.3+\mathrm{jo} 55) \mathrm{pu},. \mathrm{Z}_{\mathrm{o}}=$ ($1+\mathrm{jo} 0.78$)pu. The fault path to earth has a resistance of 0.66 pu. Determine the fault current and the voltage at the point of the fault.

Some background first

One phase earth fault

Solution using symmetric components
During the earth fault: $\underline{U}_{L 1}=\underline{Z}_{f} \underline{I}_{L 1}$

$$
\begin{aligned}
& \underline{I}_{\mathrm{L} 2}=0 \\
& \underline{I}_{\mathrm{L} 3}=0
\end{aligned}
$$

It follows:

$$
\left.\begin{array}{l}
\underline{U}_{0}+\underline{U}_{1}+\underline{U}_{2}=\underline{Z}_{\mathrm{f}} \underline{\mathrm{I}}_{\mathrm{L} 1} \quad * \\
\underline{\mathrm{I}}_{0}+\mathrm{a}^{2} \underline{I}_{1}+\mathrm{a} \underline{\mathrm{I}}_{2}=0 \\
\underline{\mathrm{I}}_{0}+\mathrm{a} \underline{I}_{1}+\mathrm{a}^{2} \underline{I}_{2}=0
\end{array}\right\} \quad \underline{\mathrm{I}}_{0}=\underline{I}_{1}=\underline{\mathrm{I}}_{2}
$$

Inverse matrix also provides the same solution

Question 3

Generally:

Network example

$$
\begin{aligned}
& \text { Voltage source is symmetric: } \\
& \Rightarrow \mathrm{E}_{1}=\mathrm{E}_{\mathrm{R}} ; \mathrm{E}_{2}=0 ; \mathrm{E}_{0}=0
\end{aligned} \quad \Rightarrow \begin{aligned}
& \underline{U}_{0}=-\underline{Z}_{0} \underline{I}_{0} \\
& \underline{U}_{1}=\underline{E}_{1}-\underline{Z}_{1} \underline{I}_{1} \\
& \underline{U}_{2}=-\underline{Z}_{2} \underline{I}_{2}
\end{aligned}
$$

From previous slide:

$$
\underline{\mathrm{U}}_{0}+\underline{\mathrm{U}}_{1}+\underline{\mathrm{U}}_{2}=\underline{\mathrm{Z}}_{\mathrm{f}} \underline{\mathrm{~L}}_{11} * \quad \text { and } \mathrm{I}_{\mathrm{L} 1}=3 \mathrm{I}_{0}
$$

$$
\text { * }-\underline{Z}_{0} \underline{I}_{0}+\underline{E}_{1}-\underline{Z}_{1} \underline{I}_{1}-\underline{Z}_{2} \underline{I}_{2}=3 \underline{Z_{f}} \underline{I}_{0}
$$

One phase earth fault

Component networks are in series connection
in one-phase earth fault Which gives for the zero sequence current:

$$
\underline{I}_{0}=\frac{\underline{E}_{1}}{\underline{Z}_{0}+\underline{Z}_{1}+\underline{Z}_{2}+3 \underline{Z}_{\mathrm{f}}}=\frac{\underline{E}_{1}}{3 \underline{Z}+3 \underline{Z}_{\mathrm{M}}+3 \underline{Z}_{\mathrm{f}}}
$$

The total fault current is three times the zero sequence current:

$$
\underline{I}_{\mathrm{f}}=3 \underline{I}_{0}=\frac{3 \underline{E}_{1}}{\underline{Z}_{0}+\underline{Z}_{1}+\underline{Z}_{2}+3 \underline{Z}_{\mathrm{f}}}=\frac{\underline{E}_{1}}{\underline{Z}+\underline{Z}_{\mathrm{M}}+\underline{Z}_{\mathrm{f}}}=\mathrm{I}_{\mathrm{L} 1}
$$

Question 3

So we can utilize the following equations:

$$
\begin{aligned}
& \bar{I}_{f}=\bar{I}_{1}=\frac{3 U}{\bar{Z}_{1}+\bar{Z}_{2}+\bar{Z}_{0}+3 \bar{Z}_{f}}=\frac{3 \times 1}{(3.58+j 1.93)}=0.649-j .035=0.738 \angle-28.3^{\circ} \\
& \Rightarrow I_{f}=0.738 p u \\
& \underline{\underline{U}} \bar{I}_{f}=\bar{I}_{f}=(0.649-j 0.35) \times 0.66=(0.43-j 0.23) p u=0.487 \angle-28.3^{\circ} \\
& \Rightarrow U_{f}=0.487 p u
\end{aligned}
$$

