

Power systems

• A symmetrical three-phase short circuit occurs on the 22kV busbars of the circuit shown as a one-line diagram in the figure below. Calculate the fault current and the fault apparent power.

- 1. Selecting base power $S_b = 100$ MVA
- 2. Drawing the equivalent circuit with reactances
- 3. Calculating Per Unit (p.u.) values for every component
- 4. Calculating the S_{sc} and I_{sc}

 $S_b = 100 \text{ MVA}$

- 1. Selecting base power $S_b = 100$ MVA
- 2. Drawing the equivalent circuit with reactances
- 3. Calculating Per Unit (p.u.) values for every component
- 4. Calculating the S_{sc} and I_{sc}

$x_{p.u.} = Z_k \frac{S_b}{S_n}$		Xg X	Xt1 XI Xt2
Name	Calculation	Reactance	
Generator (x_g)	j0.15 × 100/25	0.6 p.u.	× \
Transformer 1 (11/132) (x_{t1})	j0.09 × 100/30	0.3 p.u.	
Transformer 2 (132/22) (x_{t2})	j0.02 × 100/5	0.4 p.u.	
Line (x_l)	$j0.092\times100/100$	0.092 p.u	$x_T = x_g + x_{t1} + x_{t2} + x_l = 1.392$

1.

2.

3.

4.

• Two 100-MVA, 20-kV turbo generators (each of transient reactance 0.2 pu) are connected, each through its own 100-MVA, 0.1 pu reactance transformer, to a common 132-kV busbar. From this busbar, a 132-kV feeder, 40 km in length, supplies an 11-kV load through a 132/11-kV transformer of 200 MVA rating and reactance 0.1 pu. If a balanced threephase short circuit occurs on the low voltage terminals of the load transformer, determine, using a 100-MVA base, the fault current in the feeder and the rating of a suitable circuit breaker at the load end of the feeder. The feeder impedance per phase is $(0.035+j0.14)\Omega/\text{km}$.

- 1. Selecting base power $S_b = 100$ MVA
- 2. Drawing the equivalent circuit with reactance
- 3. Calculating Per Unit (p.u.) values for every component
- 4. Simplifying the circuit
- 5. Calculating the I_{sc} and S_{sc}

Calculating reactance of the line (feeder): $x_l = \frac{Z_l}{Z_h}$

Line impedance $Z_l = 40 * (0.035 + j0.14) = 1.4 + j5.6 = 5.77 < 76^{\circ} \Omega$ Base impedance $Z_b = \frac{U_b^2}{S_b} = \frac{132^2}{100} = 174.24\Omega$ Per Unit value $x_l = \frac{Z_l}{Z_b} = \frac{5.77 < 76^{\circ}}{174.24} = 0.033 < 76^{\circ} p.u.$

Calculating Per Unit (p.u.) values for every component
 Simplifying the circuit

Calculation

*j*0.20 × 100/100

*j*0.20 × 100/100

 $j0.10 \times 100/100$

*j*0.10 × 100/100

 $j0.10 \times 100/200$

 Z_l/Z_b

5. Calculating the I_{sc} and S_{sc}

$$x_{p.u.} = Z_k \, \frac{S_b}{S_n}$$

Name

Generator $1(x_{q1})$

Generator2(x_{g2})

Transformer1(x_{t1})

Transformer2(x_{t2})

Transformer3(x_{t3})

 $Line(feeder)(x_l)$

A single line-to-earth fault occurs in a radial transmission system. The following sequences exist between the source of supply (an infinite busbar) of voltage 1 pu to the point of the fault: Z₁ = (0.3+j0.6)pu, Z₂ = (0.3+j0.55)pu, Z₀ = (1+j0.78)pu. The fault path to earth has a resistance of 0.66 pu. Determine the fault current and the voltage at the point of the fault.

Some background first

One phase earth fault

Solution using symmetric components

During the earth fault:
$$\underline{U}_{L1} = \underline{Z}_f \underline{I}_{L1}$$

 $\underline{I}_{L2} = 0$
 $\underline{I}_{L3} = 0$
It follows: $\underline{U}_0 + \underline{U}_1 + \underline{U}_2 = \underline{Z}_f \underline{I}_{L1} *$
 $\underline{I}_0 + a^2 \underline{I}_1 + a \underline{I}_2 = 0$
 $\underline{I}_0 + a \underline{I}_1 + a^2 \underline{I}_2 = 0$
 $\underline{I}_0 + a \underline{I}_1 + a^2 \underline{I}_2 = 0$
 $I_0 = \underline{I}_1 = \underline{I}_2$
 $I_0 = 1/3 \underbrace{X}_0 (\underline{I}_R + 0 + 0) \\ \Rightarrow \underline{I}_R = 3 \underline{I}_0 (= \underline{I}_{L1})$
it also provides the same solution $|\underline{I}_1| = \frac{1}{2} |\underline{I}_1 - \underline{a}_1 - \underline{a}_2| |\underline{I}_R| = \underline{I}_1 = \underline{I}_2$

I₂

 \underline{a}^2

 $\underline{\mathbf{a}} | |\mathbf{I}_{\mathrm{T}}|$

 $=0 (= I_{L_3})$

Inverse matrix als

Generally:

$$* \quad -\underline{Z}_0 \, \underline{I}_0 + \, \underline{E}_1 - \, \underline{Z}_1 \, \underline{I}_1 - \, \underline{Z}_2 \, \underline{I}_2 = 3 \, \underline{Z}_f \, \underline{I}_0$$

One phase earth fault U <u>U</u>₂ $\underline{\mathsf{U}}_0$ \underline{Z}_2 \underline{Z}_1 \underline{Z}_0 E $3Z_{f}$ $\underline{I}_0 = \underline{I}_1 = \underline{I}_2$ Component networks are in series connection in one-phase earth fault Which gives for the zero sequence current: $\underline{I}_{0} = \frac{\underline{E}_{1}}{\underline{Z}_{0} + \underline{Z}_{1} + \underline{Z}_{2} + 3\underline{Z}_{f}} = \frac{\underline{E}_{1}}{3\underline{Z} + 3\underline{Z}_{M} + 3\underline{Z}_{f}}$

The total fault current is three times the zero sequence current:

$$\underline{I}_{f} = 3 \underline{I}_{0} = \frac{3 \underline{E}_{1}}{\underline{Z}_{0} + \underline{Z}_{1} + \underline{Z}_{2} + 3 \underline{Z}_{f}} = \frac{\underline{E}_{1}}{\underline{Z} + \underline{Z}_{M} + \underline{Z}_{f}} = \mathbf{I}_{L1}$$

So we can utilize the following equations:

$$\overline{I}_{f} = \overline{I}_{1} = \frac{3U}{\overline{Z}_{1} + \overline{Z}_{2} + \overline{Z}_{0} + 3\overline{Z}_{f}} = \frac{3 \times 1}{(3.58 + j1.93)} = 0.649 - j.035 = 0.738 \angle -28.3^{\circ}$$

$$\Rightarrow I_{f} = 0.738 \, pu$$

$$\overline{I}_{f} = \overline{I}_{0} \overline{Z}_{0} = (0.649 - j.035) + 0.66 = (0.42 - j.035) = 0.487 - (0.487) = 0.487 = 0$$

$$U_f = I_f Z_f = (0.649 - j0.35) \times 0.66 = (0.43 - j0.23) pu = 0.487 \angle -28.3^\circ$$

$$\Rightarrow U_f = 0.487 pu$$