Aalto-yliopisto
Teknillinen korkeakoulu

Exercise 6

Power systems

Question 1

a) Derive the following equation
for the voltage drop over a transmission line

$$
\underline{U_{\text {loss }} \approx I R \cdot \cos \varphi+I X \cdot \sin \varphi}
$$

b) Can this equation be applied in all situations?
c) Draw the phasor diagrams related to the equation in cases where the reactive power is inductive and capacitive.

Question 1

a) Derive the following equation for the voltage drop over a transmission line

$$
U_{\text {loss }} \approx I R \cdot \cos \varphi+I X \cdot \sin \varphi
$$

b) Can this equation be applied in all situations?

Transmission line is mostly inductive reactance

$$
\xrightarrow[{\xrightarrow[---]{\bar{Z}=R+j X \quad \bar{I}}=I_{p}-j I_{q}}]{\Delta \underline{U}_{\text {phase }}=\underline{U}_{\text {loss }}}
$$

c) Draw the phasor diagrams related to the equation in cases where the reactive power is inductive and capacitive.

Question 1

a) Derive the following equation $\xlongequal{U_{\text {bass }} \approx I R \cdot \cos \varphi+I X \cdot \sin \varphi}$

$$
\xrightarrow[\substack{\bar{Z}=R+j X \quad \bar{I}=I_{p} \\ \Delta \underline{U}_{\text {phase }}=\underline{U}_{\text {loss }}}]{\underbrace{-j I_{q}}_{\text {inductive }}}
$$

$\Delta \underline{U}_{\text {phase }}=\underline{U}_{\text {loss }}=\underline{Z} \underline{I}=(R+j X) \cdot\left(I_{p}-j I_{q}\right) \quad ; I_{p}$ is active current, I_{q} is reactive current

$$
\underline{U}_{\text {loss }}=R I_{p}-j R I_{q}+j I X_{p}-j^{2} X I_{q}=\underbrace{\left(R I_{p}+X I_{q}\right)}_{\text {longitunal }}+j \underbrace{\left(I X_{p}-R I_{q}\right)}_{\text {transverse }} \quad \quad \quad i^{2}=i \times i=-1 .
$$

Question 1

a) Derive the following equation $\xlongequal{U_{\text {Less }} \approx I R \cdot \cos \varphi+I X \cdot \sin \varphi}$

The voltage drop is typically considered as the difference between the absolute values of the phase voltage (U 1 ,ph - U2,ph). A good approximate for this can be attained by projecting the voltage phasor with the larger magnitude onto the smaller voltage phasor.
\rightarrow We can approximate that the imaginary part of Uloss is zero (projection onto the smaller voltage phasor with angle of zero).

Also, knowing that

$$
I_{p}=I \cdot \cos \varphi, I_{q}=I \cdot \sin \varphi
$$

We get: $\underline{U}_{\text {loss }}=\left(R I_{p}+X I_{q}\right)+\underbrace{j\left(I X_{p}-R I_{q}\right)}_{\approx 0}$
$\Rightarrow U_{\text {loss }} \approx I R \cdot \cos \varphi+I X \cdot \sin \varphi$,
where φ is the phase angle at the end of the line

Question 1
 b) Can this equation be applied in all situations

The equation $U_{\text {loss }} \approx I R \cdot \cos \varphi+I X \cdot \sin \varphi$
is only approximate and can be applied in a case with inductive current.

For capacity current, q-component is positive:

$$
\bar{I}=I_{p}+j I_{q}
$$

The equation in this case is

$$
\underline{U}_{\text {loss }}=(R+j X) \cdot\left(I_{p}+j I_{q}\right)=R I_{p}+j R I_{q}+j I X_{p}+j^{2} X I_{q}=\left(R I_{p}-X I_{q}\right)+j\left(R I_{q}+I X_{p}\right)
$$

Question 1
 c) Draw the phasor diagrams

$\bar{U}_{\text {phase }, 1}=\bar{U}_{\text {phase }, 2}+\overline{I Z}=\bar{U}_{\text {phase }, 2}+\bar{I}(R+j X)$
Inductive load:
$\bar{I}=I_{p}-j I_{q}$

Note: the figure is out of perspective

Question 1

c) Draw the phasor diagrams

$\bar{U}_{\text {phase }, 1}=\bar{U}_{\text {phase }, 2}+\overline{I Z}=\bar{U}_{\text {phase }, 2}+\bar{I}(R+j X)$
Capacitive load:

$$
\bar{I}=I_{p}+j I_{q}
$$

Note: the figure is out of perspective

Question 2

10 MW of active power is transferred using a three-phase line shown in the picture.
Line-to-line voltages in the both ends of the line are 110 kV .
Calculate the power factor $(\cos \varphi)$ of the load.

Question 2

10 MW of active power is transferred using a three-phase line shown in the picture. Line-to-line voltages in the both ends of the line are 110 kV .
Calculate the power factor $(\cos \varphi)$ of the load.

Question 2

Phase voltage at point 1 and point 2

$U_{\text {line }}=110 \mathrm{kV}$, three phases

Power angle equation for the three phase system

$$
P=\frac{U_{1} U_{2}}{X} \sin \delta
$$

$$
\text { Note : } P=3 \times \frac{U_{\text {phase }, 1} U_{\text {phase }, 2}}{X} \sin \delta=3 \times \frac{\frac{U_{\text {line }, 1}}{\sqrt{3}} \cdot \frac{U_{\text {line }, 2}}{\sqrt{3}}}{X} \sin \delta=\frac{U_{\text {line }, 1} \cdot U_{\text {line }, 2}}{X} \sin \delta
$$

The voltage amplitudes are now kept constant with voltage control: $\mathrm{U}_{\text {phase }, 1}=\mathrm{U}_{\mathrm{phase}, 2}$ The angle difference (power angle) between the voltages is:

$$
\delta=\arcsin \left(\frac{P X}{U_{1} U_{2}}\right)=\arcsin \left(\frac{10 \mathrm{MW} \cdot 168 \Omega}{110 \mathrm{kV} \cdot 110 \mathrm{kV}}\right) \approx 7.98^{\circ}
$$

Question 2

Calculate the power factor of the load.

To calculate the power factor of the load, we need to know $\mathrm{P}_{\text {load }}$ and Qload.
Now, the resistive losses are neglected:
$\mathrm{P}_{1}=\mathrm{P} 2=\mathrm{Pload}=\mathrm{P}$
In order to keep the voltage level constant, a certain amount of reactive power has to flow into the line from point 2 and the shunt capacitance

Reactive power angle equation for the three phase system (between voltage U1 and U2 with a reactance between) and reactive power produced by shunt capacitance (lecture 6): $Q_{c}=Y U^{2}=B U^{2}$

$$
Q_{l o a d}=Q_{2}+\frac{Q_{c}}{2}=\frac{U_{1} U_{2}}{X} \cos \delta-\frac{U_{2}^{2}}{X}+\frac{B}{2} U_{2}^{2}
$$

$\approx 4.57 \mathrm{Mvar}$

Question 2

Calculate the power factor of the load.

$$
\begin{aligned}
& \cos \varphi=\frac{P_{\text {load }}}{S_{\text {load }}}=\frac{P}{\sqrt{P^{2}+Q_{\text {load }}^{2}}}=\frac{10 \mathrm{MW}}{\sqrt{(10 \mathrm{MW})^{2}+(4.57 \mathrm{MVAr})^{2}}} \\
& \cos \varphi \approx 0.91_{\text {ind }},
\end{aligned}
$$

Another way:

Question 3

A turbine generator is delivering 20 MW at 50 Hz to a local load; it is not connected to the grid.

The load suddenly drops to 15 MW ; and the turbine governor starts to close the steam valve after a delay of 0.5 s .

The stored energy in the rotating parts is 80 MJ at $3000 \mathrm{rev} / \mathrm{min}$. What is the generated frequency at the end of the 0.5 s delay?

Question 3

A turbine generator is delivering 20 MW at 50 Hz to a local load; it is not connected to the grid.

The load suddenly drops to 15 MW ; and the turbine governor starts to close the steam valve after a delay of 0.5 s .

The stored energy in the rotating parts is 80 MJ at $3000 \mathrm{rev} / \mathrm{min}$. What is the generated frequency at the end of the 0.5 s delay?

The kinetic energy in rotating masses:

$$
\text { 1. } \mathrm{W}_{\mathrm{k}}=\frac{1}{2} \mathrm{~J} \omega^{2}
$$

The kinetic energy in rotating masses :

Question 3

1. $\mathrm{W}_{\mathrm{k}}=\frac{1}{2} \mathrm{~J} \omega^{2}$

What is the generated frequency at the end of the 0.5 d delay?
Generated steady-state power $=20 \mathrm{MW}$.
Power usage drops to 15 MW .
Excess power of 20-15 = 5 MW accelerates the generator (frequency is increased)
Rotational energy is thus increased by:

$$
\Delta \text { Energy }=P \times t=5 \times 10^{6} \mathrm{~W} \times 0.5 \mathrm{~s}=2.5 \mathrm{MJ}
$$

Rotational energy now:

$$
\begin{aligned}
& E_{2}=E_{1}+\Delta E=80+2.5=82.5 \mathrm{MJ} \\
& \frac{f_{1}^{2}}{f_{2}^{2}}=\frac{E_{1}}{E_{2}} \quad \Rightarrow f_{2}=\sqrt{\frac{f_{1}^{2} \times E_{2}}{E_{1}}} \\
& \text { and } \\
& f_{2}=\sqrt{\frac{50^{2} \times 82.5}{80}}=5 \underline{=50.775 \mathrm{~Hz}}
\end{aligned}
$$

Question 4

A $625-\mathrm{kVA} 2.4 \mathrm{kV}$ generator with $\mathrm{X}{ }_{\mathrm{d}}=0.20$ per unit is connected to a bus through a circuit breaker, as shown in the figure below. Connected through circuit breakers to the same bus are three synchronous motors rated $250 \mathrm{hp}, 2.4 \mathrm{kV}, 1.0$ power factor, 90% efficiency, with $\mathrm{X}{ }_{\mathrm{d}}=0.20$ per unit. The motors are operating at full load, unity power factor, and rated voltage, with the load equally divided among the machines.
For interrupting current, presume that transient reactance for the synchronous motors is 1.5 times the subtransient reactance. For the generator, apply the subtransient reactance.

(a) Draw the impedance diagram with the impedances marked in per unit on a base of $625 \mathrm{kVA}, 2.4 \mathrm{kV}$.
(b) Find the symmetrical short-circuit current in amperes, which must be interrupted by breakers A and B for a three-phase fault at point Q. Simplify the calculations by neglecting the pre-fault current.
(c) Repeat part (b) for a three-phase fault at point P .

Question 4
 General thoughts

Circuit breakers typically become active around 100ms after the fault. This equals around 5 cycles ($50 \mathrm{~Hz} \rightarrow 20 \mathrm{~ms}$ per cycle). In this case, we are in a transient state rather than in the substransient state.

Question 4

(a) Draw the impedance diagram marked in per unit on a base of $625 \mathrm{kVA}, 2.4 \mathrm{kV}$.

Base of 625 kVA .
Motors: Output $25 \mathrm{ohp}, 2.4 \mathrm{kV}$, 1.0 power factor, 90% efficiency.

Motor input:

$$
S=\frac{P}{\cos (\varphi)}=\frac{\frac{250 \mathrm{hp}}{0.9} \times 746 \frac{\mathrm{~W}}{\mathrm{hp}}}{1}=207.22 \mathrm{kVA} .
$$

Motor subtransient reactance:

$$
x^{\prime \prime}{ }_{m}=X^{\prime \prime}{ }_{d, m} \frac{S_{b}}{S}=j 0.2 \times \frac{625 \mathrm{kVA}}{207.22 \mathrm{kVA}}=j 0.603 \mathrm{pu}
$$

Motor reactance in transient state: $\quad x_{m}^{\prime}=1.5 \times x^{\prime \prime}{ }_{m}=1.5 \times j 0.603 p u=j 0.905 \mathrm{pu}$

Question 4 b)

Let's calculate the transient current in Q using the Thevenin's theorem
Any possible fault occurs between the generator and the motors. One phase diagram (one generator, three motors):

$$
3 \text { of } \mathrm{Zm}=\mathrm{x}_{\mathrm{m}}^{\prime}=\mathrm{jo.} 905
$$

$$
Z_{\text {th }}=\frac{Z_{\text {motors }} Z_{\text {gen }}}{Z_{\text {motors }}+Z_{\text {gen }}}=\frac{j 0.302 \times j 0.2}{j 0.302+j 0.2}=j 0.1203 \mathrm{pu}
$$

Thevenin voltage is voltage at the start of the fault:

$$
\begin{aligned}
& U_{f}=1.0 \angle 0^{\circ} p u \\
& \rightarrow I_{f}^{\prime}=\frac{U_{f}}{Z_{t h}}=\frac{1}{j 0.1203}=-j 8.315 p u
\end{aligned}
$$

Question 4 b

Let's calculate the transient current in Q (symmetrical short-circuit current) using the Thevenin's theorem

We can calculate the value of base current and absolute value of transient current:
$\mathrm{Sb}=625 \mathrm{kVA}$

$$
\begin{array}{ll}
\left|I_{B}\right|=\frac{S_{B}}{\sqrt{3} \times U_{B}}=\frac{625}{\sqrt{3} \times 2.4}=150.35 \mathrm{~A} \\
\left|I_{f}^{\prime}\right|=8.315 \times 150.35=1250.2 \mathrm{~A} \quad \begin{array}{l}
\text { This is current in } \\
\text { Fault location Q }
\end{array}
\end{array}
$$

Current of breaker A:

$$
I_{g}=I_{f}^{\prime} \frac{Z_{\text {motors }}}{Z_{g}+Z_{\text {motors }}}=-j 8.315 \times \frac{0.302}{0.502}=-j 5.0 \mathrm{pu} \quad \Leftrightarrow 752 \mathrm{~A}
$$

Current of breaker B:

$$
I_{m}=-j \frac{8.315-5.0}{3}=-j 1.105 p u \Leftrightarrow 1.105^{*} 150.35 \mathrm{~A}=166 \mathrm{~A}
$$

Question 4 c)

b) fault at point P

Fault at P:
In this case breaker A carries the current fed by generator as in b) Breaker B carries currents of generator and the other two motors

Currents to be interrupted:
Breaker A: $I=I_{g}=-j 5.0 p u=752 \mathrm{~A}$
Breaker B : $I=I_{g}+2 \times I_{m}=-j 5.0+2(-j 1.105)=-j 7.21 p u=1084 \mathrm{~A}$

