Aalto-yliopisto
Teknillinen korkeakoulu

Exercise 9

Power systems

Question 1

A two-phase zero-impedance fault occurs at point A. The distance between phases in the bus bar system is 2.5 m . Calculate the maximum peak force affecting each

Voltage C Factor table		
Voltage Level	Cmax	Cmin
Low Voltage $(<1 \mathrm{kV})$	1.05	0.95
High Voltage $(>1 \mathrm{kV})$	1.1	1

http://help.easypower.com/ezp/9.6/content/o6_IEC_S hort_Circuit/Setting_the_Short_Circuit_Method.htm phase (per length) in area 1. Apply the IEC recommended voltage correction factor (C factor) to calculate the maximum short circuit current.

Question 1

$$
\begin{aligned}
& \mathrm{Us}=\mathrm{UT} \\
& (\mathrm{Zf}=\mathrm{o})
\end{aligned}
$$

$$
\underline{a}=1 \angle 120^{\circ}
$$

Zero
Positive
Negative

$$
\begin{aligned}
& \left|\begin{array}{l}
\mathrm{I}_{0} \\
\mathrm{I}_{1} \\
\mathrm{I}_{2}
\end{array}\right|=\frac{1}{3}\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & \underline{a} & \underline{a}^{2} \\
1 & \underline{\mathrm{a}}^{2} & \underline{a}
\end{array}\right|\left|\begin{array}{l}
\mathrm{I}_{\mathrm{R}} \\
\mathrm{I}_{\mathrm{S}} \\
\mathrm{I}_{\mathrm{T}}
\end{array}\right| \begin{array}{l}
1 . \\
2 . \\
3 .
\end{array} \\
& \begin{array}{l}
\text { 1. } \Rightarrow \mathrm{I}_{0}=0 \\
\text { 2. \& 3. \& } \mathrm{I}_{\mathrm{T}}=-\mathrm{I}_{\mathrm{S}} \Rightarrow \mathrm{I}_{2}=-\mathrm{I}_{1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{l}
\underline{U}_{R} \\
\underline{U}_{S} \\
\underline{U}_{T}
\end{array}\right|=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \underline{a}^{2} & \underline{a} \\
1 & \underline{a} & \underline{a}^{2}
\end{array}\right]\left[\begin{array}{l}
\underline{U}_{0} \\
\underline{U}_{1} \\
\underline{U}_{2}
\end{array}\right] \\
& \underline{U}_{S}=\underline{U}_{0}+\underline{a}^{2} \underline{U}_{1}+\underline{a}_{2} \\
& \underline{U}_{T}=\underline{U}_{0}+a \underline{U}_{1}+\underline{a}^{2} \underline{U}_{2} \\
& \underline{U}_{S}=\underline{U}_{T} \quad \Rightarrow \underline{U}_{1}=\underline{U}_{2}
\end{aligned}
$$

Voltage source is symmetric:
$\Rightarrow E_{1}=E_{R} ; E_{2}=0 ; E_{0}=0$

Question 1

$$
\left\{\begin{array}{l}
\underline{U}_{1}=\underline{U}_{2} \\
\underline{I}_{2}=-\underline{I}_{1}
\end{array}\right.
$$

\rightarrow We can see that the voltages of the positive and negative sequence are the same and the currents are of the same magnitude but in different directions \rightarrow We get the following equivalent circuit:

Question 1

Maximum peak force

Positive sequence network:

$$
X_{k}=\frac{U^{2}}{S_{k}} \quad \begin{aligned}
& \mathrm{G}: \mathrm{X}^{\prime \prime}{ }_{\mathrm{d}}=\mathrm{X}_{2}=15 \Omega, \mathrm{X}_{0}=1 \\
& \mathrm{M}: \mathrm{Z}_{\mathrm{k}}=10 \Omega \\
& \text { Line: } \mathrm{X}_{1 \mathrm{j}}=5 \Omega, \mathrm{X}_{0 \mathrm{j}}=16 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& X_{d}^{\prime \prime}=15 \Omega \\
& X_{m}=Z_{k}=10 \Omega \\
& X_{j}=5 \Omega
\end{aligned}
$$

$$
X_{1}=\frac{\left(X_{d}^{\prime \prime}+X_{m}\right) \cdot X_{j}}{X_{d}^{\prime \prime}+X_{m}+X_{j}}=\frac{(15+10) \cdot 5}{5+10+5} \Omega=4.17 \Omega
$$

Question 1

Maximum peak force

Positive sequence network:

http://help.easypower.com/ezp/9.6/content/o6_IEC_S hort_Circuit/Setting_the_Short_Circuit_Method.htm

$$
X_{1}=\frac{\left(X_{d}^{\prime \prime}+X_{m}\right) \cdot X_{j}}{X_{d}^{\prime \prime}+X_{m}+X_{j}}=\frac{(15+10) \cdot 5}{5+10+5} \Omega=4.17 \Omega
$$

$$
U=c \cdot U_{N}=1.10
$$

$$
\underline{U}=U \underline{0^{\circ}}
$$

Question 1

Maximum peak force

Negative sequence network:

G: $\quad \mathrm{X}{ }^{\prime}{ }_{\mathrm{d}}=\mathrm{X}_{2}=15 \Omega, \mathrm{X}_{0}=10 \Omega$
$\mathrm{M}: \mathrm{Z}_{\mathrm{k}}=10 \Omega$
Line: $\mathrm{X}_{1 \mathrm{j}}=5 \Omega, \mathrm{X}_{0 \mathrm{j}}=16 \Omega$

$$
\begin{aligned}
& X_{g 2}=15 \Omega \\
& X_{m}=Z_{k}=10 \Omega \\
& X_{j}=5 \Omega
\end{aligned} \quad X_{2}=\frac{\left(X_{g 2}+X_{m}\right) \cdot X_{j}}{X_{g 2}+X_{m}+X_{j}}=\frac{(15+10) \cdot 5}{5+10+5} \Omega=4.17 \Omega
$$

Question 1

Maximum peak force

Two phase short circuit ($\mathbf{I} 1=-\mathbf{I} 2$):

Question 1

Maximum peak force

$I_{S}=\sqrt{3} \cdot I_{1}=\sqrt{3} \cdot 8.38 \mathrm{kA}=14.52 \mathrm{kA}$
Peak value of the alternating current: $\quad \hat{i}=I_{S} \sqrt{2}$

In addition, there is a DC-component. If no attenuation, the amplitude of DCcomponent can be equal to the peak value of the alternating current component.
$i_{\text {max }}=\underline{2} \hat{i}=2 I_{S} \sqrt{2}=2 \cdot 14.52 \mathrm{kA} \cdot \sqrt{2}=41.07 \mathrm{kA}$

Question 1

Maximum peak force

$$
i_{\max }=2 \hat{i}=2 I_{S} \sqrt{2}=2 \cdot 14.52 \mathrm{kA} \cdot \sqrt{2}=41.07 \mathrm{kA}
$$

Max force is between lines S and T :

$$
\begin{aligned}
& F_{\max }=\frac{4 \pi \cdot 10^{-7}}{2 \pi} \cdot i_{S} \cdot i_{T} \cdot \frac{l}{a} \\
& F_{\max }=\frac{0.2}{10^{6}} \cdot i_{\max }^{2} \cdot \frac{l}{a}
\end{aligned}
$$

$$
F=\frac{\mu_{0}}{2 \pi} \frac{i_{1} i_{2} L}{a}
$$

$$
\frac{F_{\max }}{l}=0.2 \cdot \frac{i(\mathrm{kA})_{\max }^{2}}{a}=0.2 \cdot \frac{(41.07 \mathrm{kA})^{2}}{2.5 \mathrm{~m}} \frac{\mathrm{~N}}{\mathrm{kA}^{2}} \approx 134.9 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

Question 2

A short circuit occurs in a $24-\mathrm{kV}$ bus bar system. The phase current instantaneous values are $i_{\mathrm{R}}=30 \mathrm{kA}, i_{\mathrm{S}}=15 \mathrm{kA}$ and $i_{\mathrm{T}}=15 \mathrm{kA}$.

Calculate the forces (per length) that affect each bus bar for the
a) Upper system
b) Lower system

Question 2

a) forces per length in the upper system

$$
\mathrm{i}_{\mathrm{R}}=30 \mathrm{kA}, \mathrm{i}_{\mathrm{S}}=15 \mathrm{kA} \text { and } \mathrm{i}_{\mathrm{T}}=15 \mathrm{kA} .
$$

$$
a=0.3 \mathrm{~m}
$$

$$
\mathrm{F}=\frac{\mu_{0}}{2 \pi} \frac{\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{~L}}{\mathrm{a}}
$$

$$
F_{\max }=\frac{0.2}{10^{6}} \cdot i_{1} i_{2} \cdot \frac{l}{a}
$$

$$
\begin{aligned}
& \frac{F_{\mathrm{RS}}}{l}=\frac{F_{\mathrm{SR}}}{l}=0.2 \cdot \frac{i_{\mathrm{R}} i_{\mathrm{S}}}{a}=0.2 \cdot \frac{30 \cdot 15}{0.3 \mathrm{~m}} \mathrm{~N}=300 \frac{\mathrm{~N}}{\mathrm{~m}} \\
& \frac{F_{\mathrm{RT}}}{l}=\frac{F_{\mathrm{TR}}}{l}=0.2 \cdot \frac{i_{\mathrm{R}} i_{\mathrm{T}}}{2 a}=0.2 \cdot \frac{30 \cdot 15}{2 \cdot 0.3 \mathrm{~m}} \mathrm{~N}=150 \frac{\mathrm{~N}}{\mathrm{~m}} \\
& \frac{F_{\mathrm{ST}}}{l}=\frac{F_{\mathrm{TS}}}{l}=0.2 \cdot \frac{i_{\mathrm{S}} i_{\mathrm{T}}}{a}=0.2 \cdot \frac{15 \cdot 15}{0.3 \mathrm{~m}} \mathrm{~N}=150 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

Question 2

a) forces per length in the upper system

Question 2

b) forces per length in the lower system

$$
\begin{gathered}
\frac{F_{R S}}{l}=\frac{F_{S R}}{l}=0.2 \cdot \frac{i_{R} i_{S}}{a}=0.2 \cdot \frac{30 \cdot 15}{0.3 \mathrm{~m}} \mathrm{~N}=300 \frac{\mathrm{~N}}{\mathrm{~m}} \\
\frac{F_{R T}}{l}=\frac{F_{R T}}{l}=0.2 \cdot \frac{i_{R} i_{T}}{a}=0.2 \cdot \frac{30 \cdot 15}{0.3 \mathrm{~m}} \mathrm{~N}=300 \frac{\mathrm{~N}}{\mathrm{~m}} \\
\frac{F_{S T}}{l}=\frac{F_{T S}}{l}=0.2 \cdot \frac{i_{S} i_{T}}{a}=0.2 \cdot \frac{15 \cdot 15}{0.3 \mathrm{~m}} \mathrm{~N}=150 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{gathered}
$$

a

Question 2

b) forces per length in the lower system

$$
\frac{\bar{F}_{R}}{l}=\frac{\left(\bar{F}_{R S}+\bar{F}_{R T}\right)}{l}=\left(300 / 30^{\circ}+300 / \underline{/-30^{\circ}}\right) \frac{\mathrm{N}}{\mathrm{~m}}=519.6 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

$$
\frac{\bar{F}_{S}}{l}=\frac{\left(\bar{F}_{S R}+\bar{F}_{S T}\right)}{l}=\left(300 / \underline{210^{\circ}}+150 / \underline{90^{\circ}}\right) \frac{\mathrm{N}}{\mathrm{~m}}=-259.8 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

$$
\frac{\bar{F}_{T}}{l}=\frac{\left(\bar{F}_{T R}+\bar{F}_{T S}\right)}{l}=\left(300 / 150^{\circ}+150 \underline{/-90^{\circ}}\right) \frac{\mathrm{N}}{\mathrm{~m}}=\underline{\underline{-259.8 \frac{\mathrm{~N}}{\mathrm{~m}}}}
$$

Directly up

Directly down

Directly down

Question 3

Two identical transformers each have a nominal or no-load ratio of $33 / 11 \mathrm{kV}$ and a reactance of 2Ω referred to the $11-\mathrm{kV}$ side; resistance may be neglected. The transformers operate in parallel and supply a load of $9 \mathrm{MVA}, 0.8$ p.f. lagging. Calculate the current taken by each transformer when they operate five tap steps apart (each step is $\mathbf{1 . 2 5}$ per cent of the nominal voltage).

Question 3

Current by each transformer

Let's select load side as a base reference:

$$
\begin{aligned}
& Z_{b}=\frac{U_{b}^{2}}{S_{b}}=\frac{\left(11 \times 10^{3}\right)^{2}}{9 \times 10^{6}}=13.44 \Omega \\
& I_{B}=\frac{S_{B}}{\sqrt{3} \times U_{B}}=\frac{9 \times 10^{6}}{\sqrt{3} \times 11 \times 10^{3}}=472.4 \mathrm{~A}
\end{aligned}
$$

$$
\mathrm{S}=9 \mathrm{MVA}, \cos \varphi=0.8 \mathrm{ind}
$$

Transformer reactance in per unit:

$$
x_{t}=\frac{X_{t}}{Z_{b}}=\frac{j 2 \Omega}{13.44 \Omega}=j 0.149 p u
$$

Load current in per unit:

$$
i_{L}=\left(\frac{s \angle \arccos (0.8)}{u \angle 0^{\circ}}\right)^{*}=\frac{1}{1} \angle-36.87^{\circ}=(0.8-j 0.6) p u
$$

Question 3

Current by each transformer

An approximate solution is to use this equivalent circuit, where ΔU is the regulating transformer to

Equivalent circuit accommodate the voltage tap change in the second transformer. This voltage creates a circulating current Icirc.

With switch \boldsymbol{S} closed, only a very small fraction of that current goes through the load impedance, because it is much larger than the transformers impedance, then superposition principle is applied to $\Delta \mathrm{U}$ and the source voltage. With $\Delta \mathrm{U}$ short-circuited, the current in each path is half the load current. Then we just
 need to superimpose the circulating current.

Question 3

Current by each transformer, when 5 voltage taps of 1.25\%

Voltage difference due to tap setting creates a current circulating through the parallel transformers:

$$
\begin{aligned}
& \underline{i}_{\text {circ. }}=\frac{\Delta \underline{U}}{\underline{Z}}=\frac{5 \cdot 0.0125}{2 \cdot x_{t}}=\frac{0.0625}{j 0.298}=-j 0.210 p u \\
& \underline{i}_{T a}=\frac{1}{2}(0.8-j 0.6)-(-j 0.210)=(0.4-j 0.09) p u \\
& =0.41 \angle-12.68^{\circ} p u \\
& I_{T a}=0.41 \times 472.4 A=\underline{\underline{194 A}} \\
& I_{T b}=\left[\frac{1}{2}(0.8-j 0.6)-j 0.210\right] \times 472.4 \mathrm{~A}=\underline{\underline{306 A}}
\end{aligned}
$$

Question 4

Three $11-\mathrm{kV}, 100-\mathrm{MVA}$ generators are connected to common busbars. Each is connected via a $100-\mathrm{MVA}$ inductor and an identical circuit breaker. The inductors have reactances of $0.15 \mathrm{pu}, 0.20 \mathrm{pu}$ and 0.30 pu .

If the generators each have a transient reactance of 0.25 pu , what is the minimum circuit-breaker rating to protect the generators against a fault on the common busbars?

Question 4

Inductor reactances $0.15 \mathrm{pu}, 0.20 \mathrm{pu}$ and 0.30 pu .
100-MVA generators each have a transient reactance of 0.25 pu

$$
\begin{gathered}
\mathrm{G}_{1}: \quad x_{T}=(0.25+0.15) p u=0.4 p u \\
S_{S C}=\frac{S_{B}}{x_{T}}=\frac{100 \mathrm{MVA}}{0.4}=250 \mathrm{MVA} \\
\mathrm{G}_{2}: \quad x_{T}=(0.25+0.2) p u=0.45 \mathrm{pu} \\
S_{S C}=\frac{100 \mathrm{MVA}}{0.45}=222 \mathrm{MVA} \\
\mathrm{G}_{3}: \quad x_{T}=(0.25+0.3) p u=0.55 \mathrm{pu} \\
S_{S C}=\frac{100 \mathrm{MVA}}{0.55}=182 \mathrm{MVA}
\end{gathered}
$$

common bus

Therefore, the minimum circuit-breaker rating to protect the generators from common busbar fault, since they were said to be all identical, is $\mathbf{2 5 0} \mathbf{~ M V A}$.

