

Power systems

A two-phase zero-impedance fault occurs at point A. The distance between phases in the bus bar system is 2.5 m. **Calculate the maximum peak force affecting each phase (per length) in area 1**. Apply the IEC recommended voltage correction factor (C factor) to calculate the maximum short circuit current.

Voltage C Factor table		
Voltage Level	Cmax	Cmin
Low Voltage (< 1 kV)	1.05	0.95
High Voltage (> 1 kV)	1.1	1

http://help.easypower.com/ezp/9.6/content/06_IEC_S hort_Circuit/Setting_the_Short_Circuit_Method.htm

Line $\begin{array}{l} 110 \ \mathrm{kV} \\ \mathrm{S}_{\mathrm{k}} = \infty \end{array}$ G М ÷ RST

<u>a</u> = 1∠120°

 \mathbf{I}_0

 I_1

 $=\frac{1}{3}$

Zero Positive Negative

- - 1. \Rightarrow I₀ = 0

2. & 3. &
$$I_T = -I_S \implies I_2 = -I_1$$

Voltage source is symmetric: \Rightarrow E₁ = E_R ; E₂ = 0 ; E₀ = 0

$$\begin{vmatrix} \underline{U}_{R} \\ \underline{U}_{S} \\ \underline{U}_{T} \end{vmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \underline{a}^{2} & \underline{a} \\ 1 & \underline{a} & \underline{a}^{2} \end{bmatrix} \begin{bmatrix} \underline{U}_{0} \\ \underline{U}_{1} \\ \underline{U}_{2} \end{bmatrix}$$
$$\underbrace{U_{S}} = \underline{U}_{0} + \underline{a}^{2} \underline{U}_{1} + \underline{a} \underline{U}_{2}$$
$$\underbrace{U_{T}} = \underline{U}_{0} + \underline{a} \underline{U}_{1} + \underline{a}^{2} \underline{U}_{2}$$
$$\underbrace{U_{T}} = \underline{U}_{0} + \underline{a} \underline{U}_{1} + \underline{a}^{2} \underline{U}_{2}$$
$$\underbrace{U_{S}} = \underline{U}_{T} \implies \underline{U}_{1} = \underline{U}_{2}$$

$$\begin{cases} \underline{U}_1 = \underline{U}_2 \\ \underline{I}_2 = -\underline{I}_1 \end{cases}$$

→ We can see that the voltages of the positive and negative sequence are the same and the currents are of the same magnitude but in different directions
→ We get the following equivalent circuit:

Question 1 <u>Maximum</u> peak force

Positive sequence network:

$$\begin{aligned} X_{d}^{"} &= 15 \ \Omega \\ X_{m} &= Z_{k} = 10 \ \Omega \\ X_{j} &= 5 \ \Omega \end{aligned} \qquad X_{1} = \frac{\left(X_{d}^{"} + X_{m}\right) \cdot X_{j}}{X_{d}^{"} + X_{m} + X_{j}} = \frac{\left(15 + 10\right) \cdot 5}{5 + 10 + 5} \ \Omega = 4.17 \ \Omega \end{aligned}$$

Question 1 <u>Maximum</u> peak force

Positive sequence network:

Χ", Х" Α Xj G: $X''_d = X_2 = 15 \Omega, X_0 = 10 \Omega$ $X_k = \frac{U^2}{S_k}$ M: $Z_k = 10 \Omega$ <u>U</u> √3 Line: $X_{1i} = 5 \Omega, X_{0i} = 16 \Omega$ $X_{\mathbf{k}} = 0 \ \Omega$ Voltage C Factor table Cmax Voltage Level Cmin $X_{1} = \frac{\left(X_{d}^{''} + X_{m}\right) \cdot X_{j}}{X_{d}^{''} + X_{m} + X_{j}} = \frac{\left(15 + 10\right) \cdot 5}{5 + 10 + 5} \ \Omega = 4.17 \ \Omega$ Low Voltage (< 1 kV) 1.05 0.95 High Voltage (> 1 kV) 1.1 1 $U = c \cdot U_N = 1.10 \ 110 \ \text{kV} = 121 \ \text{kV}$ http://help.easypower.com/ezp/9.6/content/06 IEC S hort Circuit/Setting the Short Circuit Method.htm $U = U / 0^{\circ}$

Negative sequence network:

G:
$$X''_d = X_2 = 15 \Omega, X_0 = 10 \Omega$$

M: $Z_k = 10 \Omega$
Line: $X_{1j} = 5 \Omega, X_{0j} = 16 \Omega$

$$X_{g2} = 15 \Omega$$

$$X_m = Z_k = 10 \Omega$$

$$X_2 = \frac{\left(X_{g2} + X_m\right) \cdot X_j}{X_{g2} + X_m + X_j} = \frac{\left(15 + 10\right) \cdot 5}{5 + 10 + 5} \Omega = 4.17 \Omega$$

Two phase short circuit (I1 = -I2):

$$\underline{I}_{S} = \underline{I}_{0} + \underline{a}^{2} \underline{I}_{1} + \underline{a} \underline{I}_{2} = 0 + (\underline{a}^{2} - \underline{a}) \cdot \underline{I}_{1}$$
$$\underline{I}_{T} = \underline{I}_{0} + \underline{a} \underline{I}_{1} + \underline{a}^{2} \underline{I}_{2} = 0 + (\underline{a}^{2} - \underline{a}) \cdot \underline{I}_{2}$$
$$\underline{a}^{2} - \underline{a} = -\frac{1/240^{\circ} - 1/120^{\circ}}{-1/120^{\circ}} = \sqrt{3} / -90^{\circ}$$
$$\underline{I}_{S} = \sqrt{3} \cdot \underline{I}_{1} = \sqrt{3} \cdot 8.38 \text{ kA} = 14.52 \text{ kA}$$

$$\begin{vmatrix} I_R \\ I_S \\ I_S \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \underline{a}^2 & \underline{a} \\ 1 & \underline{a}^2 & \underline{a}^2 \end{vmatrix} \begin{vmatrix} I_1 \\ I_1 \\ I_2 \end{vmatrix}$$

 $I_s = \sqrt{3} \cdot I_1 = \sqrt{3} \cdot 8.38 \text{ kA} = 14.52 \text{ kA}$

Peak value of the alternating current: $\hat{i} = I_S \sqrt{2}$

In addition, there is a DC-component. If no attenuation, the amplitude of DCcomponent can be equal to the peak value of the alternating current component.

$$i_{\text{max}} = \underline{2}\hat{i} = 2I_S\sqrt{2} = 2.14.52 \text{ kA} \cdot \sqrt{2} = 41.07 \text{ kA}$$

$$i_{\text{max}} = 2\hat{i} = 2I_S \sqrt{2} = 2.14.52 \text{ kA} \cdot \sqrt{2} = 41.07 \text{ kA}$$

 $F_{\max} = \frac{4\pi \cdot 10^{-7}}{2\pi} \cdot i_S \cdot i_T \cdot \frac{l}{a}$

$$F = \frac{\mu_0}{2\pi} \frac{i_1 i_2 L}{a}$$

$$\frac{F_{\text{max}}}{l} = 0.2 \cdot \frac{i(kA)_{\text{max}}^2}{a} = 0.2 \cdot \frac{(41.07 \text{ kA})^2}{2.5 \text{ m}} \frac{N}{kA^2} \approx 134.9 \frac{N}{m}$$

F

а

A short circuit occurs in a 24-kV bus bar system. The phase current instantaneous values are $i_R = 30$ kA, $i_S = 15$ kA and $i_T = 15$ kA.

Calculate the forces (per length) that affect each

bus bar for the

- a) Upper system
- b) Lower system

Question 2 a) forces per length in the upper system

 i_R = 30 kA, i_S =15 kA and i_T =15 kA.

$$a = 0.3 \text{ m}$$

$$F = \frac{\mu_0}{2\pi} \frac{i_1 i_2 L}{a}$$

$$F_{\max} = \frac{0.2}{10^6} \cdot i_1 i_2 \cdot \frac{l}{a}$$

$$\frac{F_{\rm RS}}{l} = \frac{F_{\rm SR}}{l} = 0.2 \cdot \frac{i_{\rm R} i_{\rm S}}{a} = 0.2 \cdot \frac{30 \cdot 15}{0.3 \,\rm{m}} \,\rm{N} = -300 \,\frac{\rm{N}}{\rm{m}}$$
$$\frac{F_{\rm RT}}{l} = \frac{F_{\rm TR}}{l} = 0.2 \cdot \frac{i_{\rm R} i_{\rm T}}{2a} = 0.2 \cdot \frac{30 \cdot 15}{2 \cdot 0.3 \,\rm{m}} \,\rm{N} = -150 \,\frac{\rm{N}}{\rm{m}}$$

$$\frac{F_{\rm ST}}{l} = \frac{F_{\rm TS}}{l} = 0.2 \cdot \frac{i_{\rm S} i_{\rm T}}{a} = 0.2 \cdot \frac{15 \cdot 15}{0.3 \,\rm{m}} \,\rm{N} = 150 \,\frac{\rm{N}}{\rm{m}}$$

Question 2 a) forces per length in the upper system

$$\frac{\overline{F}_{R}}{l} = \frac{\left(\overline{F}_{RS} + \overline{F}_{RT}\right)}{l} = (300 + 150)\frac{N}{m} = \frac{450\frac{N}{m}}{l}$$

$$\frac{\overline{F}_{S}}{l} = \frac{\left(\overline{F}_{SR} + \overline{F}_{ST}\right)}{l} = \left(-300 - 150\right)\frac{N}{m} = -450\frac{N}{m}$$

$$\frac{\overline{F}_T}{l} = \frac{\left(\overline{F}_{TR} + \overline{F}_{TS}\right)}{l} = \left(-150 + 150\right)\frac{N}{m} = 0\frac{N}{m}$$

Question 2 b) forces per length in the lower system

 $i_{\rm R}$ = 30 kA, $i_{\rm S}$ = 15 kA and $i_{\rm T}$ = 15 kA.

Question 2 b) forces per length in the lower system

$$\frac{\overline{F}_R}{l} = \frac{\left(\overline{F}_{RS} + \overline{F}_{RT}\right)}{l} = \left(300 / 30^\circ + 300 / - 30^\circ\right) \frac{N}{m} = \frac{519.6 \frac{N}{m}}{l}$$

$$\frac{\overline{F}_{S}}{l} = \frac{\left(\overline{F}_{SR} + \overline{F}_{ST}\right)}{l} = \left(300/210^{\circ} + 150/90^{\circ}\right)\frac{N}{m} = -259.8\frac{N}{m}$$

$$\frac{\overline{F}_T}{l} = \frac{\left(\overline{F}_{TR} + \overline{F}_{TS}\right)}{l} = \left(300/150^\circ + 150/-90^\circ\right)\frac{N}{m} = -259.8\frac{N}{m}$$

Directly down

Directly down

Two identical transformers each have a nominal or no-load ratio of 33/11 kV and a reactance of 2 Ω referred to the 11-kV side; resistance may be neglected. The transformers operate in parallel and supply a load of 9 MVA, 0.8 p.f. lagging. Calculate the current taken by each transformer when they operate five tap steps apart (each step is 1.25 per cent of the nominal voltage).

Question 3 Current by each transformer

Let's select load side as a base reference:

$$Z_b = \frac{U_b^2}{S_b} = \frac{\left(11 \times 10^3\right)^2}{9 \times 10^6} = 13.44\Omega$$

$$I_B = \frac{S_B}{\sqrt{3} \times U_B} = \frac{9 \times 10^6}{\sqrt{3} \times 11 \times 10^3} = 472.4 \text{A}$$

Transformer reactance in per unit:

$$x_t = \frac{X_t}{Z_b} = \frac{j2\Omega}{13.44\Omega} = j0.149\,pu$$

Load current in per unit:

$$i_L = \left(\frac{s\angle \arccos(0.8)}{u\angle 0^\circ}\right)^* = \frac{1}{1}\angle -36.87^\circ = (0.8 - j0.6)\,pu$$

S = 9 MVA, $\cos \phi = 0.8$ ind

Question 3 Current by each transformer

An approximate solution is to use this equivalent circuit, where ΔU is the regulating transformer to accommodate the voltage tap change in the second transformer. This voltage creates a circulating current I_{circ}.

With switch S closed, only a very small fraction of that current goes through the load impedance, because it is much larger than the transformers impedance, then superposition principle is applied to ΔU and the source voltage. With ΔU short-circuited, the current in each path is half the load current. Then we just need to superimpose the circulating current.

Current by each transformer, when 5 voltage taps of 1.25%

Voltage difference due to tap setting creates a current circulating through the parallel transformers:

Three 11-kV, 100-MVA generators are connected to common busbars. Each is connected via a 100-MVA inductor and an identical circuit breaker. The inductors have reactances of 0.15pu, 0.20pu and 0.30pu.

If the generators each have a transient reactance of 0.25pu, what is the minimum circuit-breaker rating to protect the generators against a fault on the common busbars?

Inductor reactances 0.15pu, 0.20pu and 0.30pu.

100-MVA generators each have a transient reactance of 0.25pu

G₁:
$$x_T = (0.25 + 0.15) pu = 0.4 pu$$

$$S_{SC} = \frac{S_B}{x_T} = \frac{100\text{MVA}}{0.4} = 250\text{MVA}$$

G₂:
$$x_T = (0.25 + 0.2) pu = 0.45 pu$$

$$S_{SC} = \frac{100 \text{MVA}}{0.45} = 222 \text{MVA}$$

G₃:
$$x_T = (0.25 + 0.3) pu = 0.55 pu$$

$$S_{SC} = \frac{100\text{MVA}}{0.55} = 182\text{MVA}$$

Therefore, the minimum circuit-breaker rating to protect the generators from common busbar fault, since they were said to be all identical, is <u>250 MVA</u>.

