

Introduction to Space ELEC-E4210 (5 cr)

Today

- Course introduction and practicalities. (AL)
- Astronomy / space research activities in Finland and in Aalto.
- Content and dimensions of the Universe.
- Short introduction to space plasma physics. (EK)

ESA

Teachers

Anne Lähteenmäki, Esa Kallio, Jaan Praks, Joni Tammi, Merja Tornikoski @aalto.fi

+course assistants

Teaching methods & materials

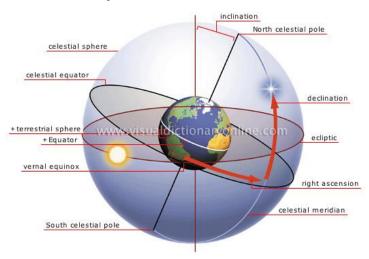
- Many topics, many methods, many materials.
- Teaching methods chosen and applied by each teacher and topic.
- This course gives you the necessary background for... space physics ...
 orbits & celestial mechanics ... coordinate systems ... emission
 mechanisms ... basic astronomy ...
 -so there is no book to cover this all ...
 - Lecture materials in MyCourses, additional reading, links etc.

Course chat for students

 Join Telegram group at https://t.me/joinchat/wx0uowbhChg4N2Zk

 No teachers, this is for students only! Questions to teachers should go via email or general discussion in MyCourses.

Feedback is welcome


- During and after the course:
 - E-mail
 - MyCourses
 - Talk to us
 - Take the course survey
- Your chance to make this a good course!

Space science and technology courses

- ELEC-E4220 Space instrumentation
- ELEC-E4230 Microwave Earth Observation instrumentation
- ELEC-E4240 Satellite systems
- ELEC-E4520 Space physics
- ELEC-E4530 Radio astronomy
- ELEC-E4540 Space Climate
- ELEC-E4920 Space technology project (5 10 cr)
- ELEC-E4930 Special assignments (5 10 cr)

"Basics of space"

- Contents of the Universe and the solar system
- Space environment
- Space exploration
- Tools for understanding space
 - Celestial coordinate systems
 - Measurement of time
 - Celestial mechanics, orbits
 - Basics of emission mechanisms, plasma physics and astronomy

Learning outcomes

- After the course the student has the basic knowledge of astronomy, space physics and space technology that are needed for further studies.
- The student knows the structure and central physical properties of the universe and the solar system, and the objects contained in them.
- She/he identifies the basic concepts and tools of astronomy and space physics, and is able to solve simple problems related to them.
- The student can list what kind of observations can be made of astronomical and solar system phenomena, and what is the motivation behind such efforts.
- She/he can compute simple orbits of satellites using celestial and orbital mechanics, and can apply various celestial coordinate systems.
- The student recognises the basic vocabulary used in space science and technology, and how Aalto University is situated in the national and international space research scenes.

Workload

Course structure

Follow the teaching session listings in section Course schedule in MyCourses. All you need to know is in MyCourses.

We will have:

- Occasional preliminary work for lectures.
- Live teaching sessions via Zoom.
- Pre-recorded materials and other self-study materials.
- Assignments, quizzes...

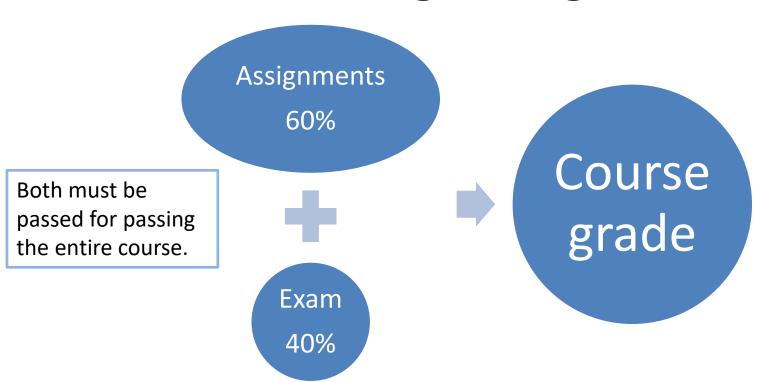
Preliminary course schedule

All changes will be posted in MyCourses!

Theory session	Practice session	Topic
13.9. Zoom session	(14.9. no teaching)	Course introduction & information
20.9. Zoom session	21.9. Zoom session	Solar system, planets & space environment
27.9. Zoom session	28.9. Zoom session	Plasma 1: Observations
4.10. Zoom session	5.10. Zoom session	Plasma 2: Modelling
11.10. Preliminary work+ Zoom session	12.10. Zoom session	Coordinate systems & time
18.10. Zoom session	19.10. Zoom session	Orbits & celestial mechanics
(25.10.)	(26.10.)	Exam week, no teaching
1.11. Zoom session	2.11. Zoom session	Space technology and history
8.11. Self-study	9.11. Zoom session	Emission mechanisms 1
15.11. Self-study	16.11. Zoom session	Emission mechanisms 2
22.11. Zoom session	23.11. Zoom session	Galactic astronomy 1
29.11. Zoom session	30.11. Zoom session	Galactic astronomy 2
(6.12. no teaching)	7.12. Zoom session	Extragalactic astronomy & cosmology (theory session only)
	14.12. Exam	Exam week, exam on 14.12.

Course structure

- Theory sessions on Mondays 10-12 via Zoom.
- Practice sessions on Tuesdays 12-14 via Zoom.
 - Complement the theory sessions, opportunity for questions and discussion.
 - First practice session: 21.9.2021. Assignment deadlines
 Tuesdays a week after, at the start of the next practice session at 12.15.
 - Obey the deadlines for submissions. This means you. Really!
- Alternatively: pre-recorded and other self-study materials.
- Exam on 14.12.2021.


How to participate in live teaching sessions

- Zoom room for the course can be found in MyCourses in the Course schedule section.
- Always use this link on this course, for both theory and practice sessions.
- We start quarter pass the hour, that is 10.15 or 12.15.
- It is difficult for the teacher to follow chat during lectures so please be patient with possible questions. You can also speak up!

How to work with self-study materials

- Follow the instructions given for the teaching session. The materials are (usually) given in the order you should study them.
- Self-study materials typically include pre-recorded lectures, links to reading materials, videos, simulations and such, quizzes, assignments as usual...
 - In this case there is usually no live teaching session: always check the course schedule!

Evaluation and grading

Space @Aalto

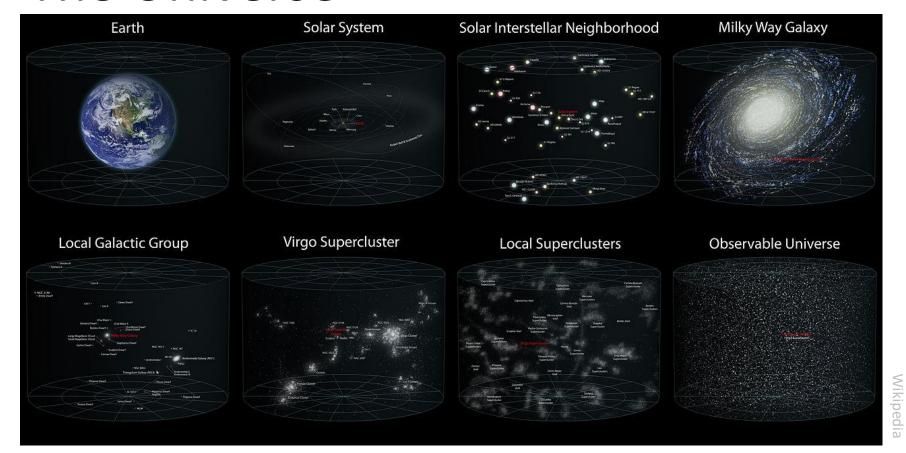
Earth Observation Space Physics Radio Astronomy Space Technology +Robotics Science:

Observations

Theory

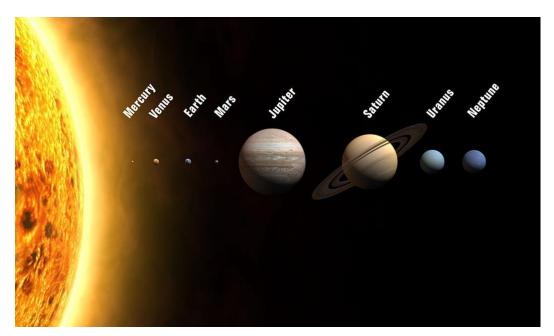
Technology:

Design


Construction

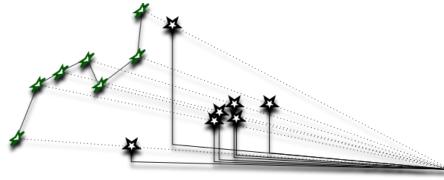
International community and cooperation

GOAL:


Engineers that understand science; scientists that understand engineering.

The Universe

Solar system


- The Sun
- Planets & moons
- Asteroids
- Meteoroids
- Comets
- Interplanetary dust
- Solar wind

Stars

• Constellations, asterisms

- Star clusters
 - Globular clusters
 - Open clusters

Galaxies

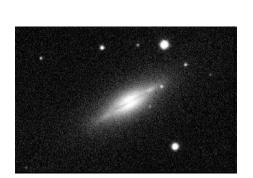


Annotated Roadmap to the Milky Way (artist's concept) NASA / JPL-Caltech / R. Hurt (SSC-Caltech)

ESO

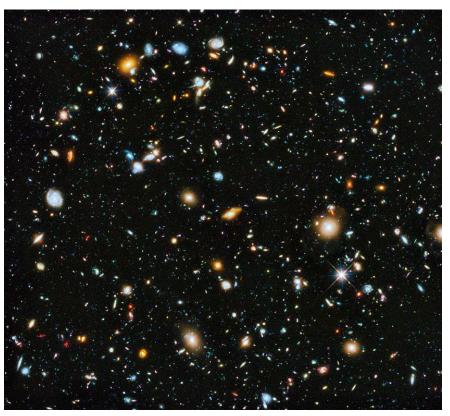
The Galaxy aka Milky Way

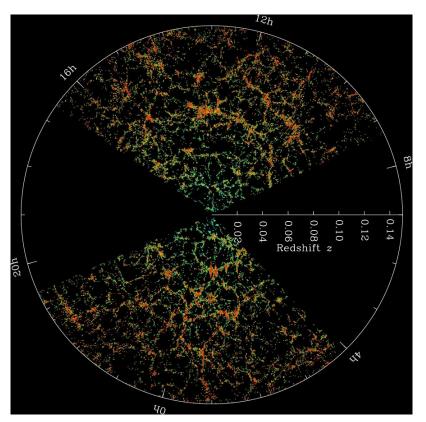
Elliptical galaxies



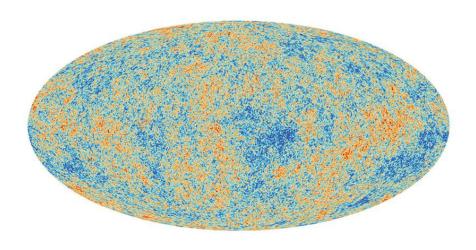
Spiral galaxies

Lenticular galaxies

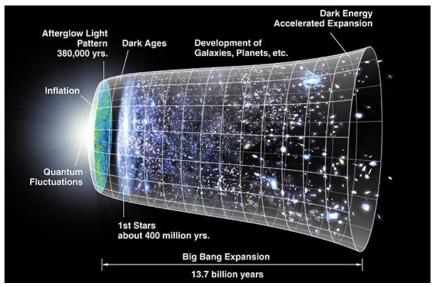



Irregular galaxies

Galaxy clusters & large-scale structure



Hubble


SDS

Cosmology

 Cosmic microwave background, CMB

The age of the Universe is
 13.8 x 10⁹ years

Dimensions of the Universe: Angular measurements

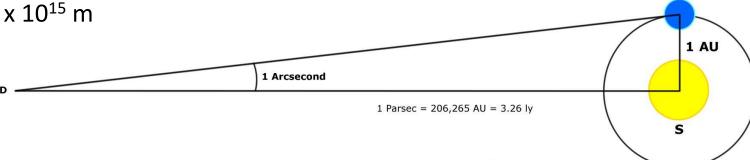
Arcminute (')

• 1/60th of a degree

Arcsecond (")

• 1/60th of an arcminute

For example:


Moon 0.5° or 30'

Proxima Centauri 0.001"

Dimensions of the Universe

- Astronomical Unit, AU
 - $-149.6 \times 10^9 \,\mathrm{m}$
- Light year
 - $-9.5 \times 10^{15} \,\mathrm{m}$
- Parsec, pc
 - $-31 \times 10^{15} \,\mathrm{m}$

- Distance to the Sun 8.3 light minutes
- Distance to Pluto 5.5 light hours
- Distances between stars ~pc
- Diameter of the Milky Way ~30 kpc
- Largest galaxies ~100 kpc
- Distances between galaxies ~Mpc
- Observable Universe > 28 x 10⁹ pc

Astronomy in Finland

- Aalto, Universities of Turku, Helsinki and Oulu
- Astronomy/astrophysics, planetary science, cosmology
 - Instrumentation: radio, optical (+TeV)

MAGIC Metsähovi (KVA)

(Tuorla)

Astronomy in Finland

International instrumentation: radio, optical, IR, UV, X-rays, gamma-rays, TeV

Ground-based, satellites (ESA, NASA...), networks (such as Very Long

Baseline Interferometry, VLBI)

Astronomical instrument building

- Receivers, software and data transfer technology at Metsähovi
- Planck 70 GHz receiver at Millilab, DA-Design, Metsähovi etc
- X-rays (Helsinki)
- Solar system (FMI, Aalto, Helsinki, Oulu, Turku; Esa K!)

European Southern Observatory ESO

• Three observatory sites in Chile: La Silla, Paranal, Chajnantor

ESO

- FINCA
 Finnish Centre for Astronomy with ESO
- Finnish Centre for Astronomy with ESO, FINCA
- Research, careers, training

SEST: until 2003 E-ELT: 2025

