Cellulose: chemical modification

CHEM-E2140

Eero Kontturi 30th September 2021

Learning objectives

After this lecture, you will be able to:

- Distinguish the common pathways of cellulose modification: esterification and etherification
- List the most common cellulose derivatives, how they are made, how they dissolve, and what they are used for
- Be aware of the concept of regioselectivity
- Calculate the degree of substitution

Outline

- (1) Chemical modification of cellulose motivation
- (2) Background: terminology, challenges
- (3) Degree of substitution: how to calculate
- (4) Esterification of cellulose
- (5) Etherification of cellulose
- (6) Regioselectivity in chemical modification of cellulose

Motivation for cellulose modification

- Preparation of substances that have different properties from cellulose, yet they are of renewable origin and (to an extent) biodegradable
 - One of the most important properties is that most cellulose esters and ethers are thermoplastic (cellulose is not)
- Modified cellulose, i.e., cellulose derivatives often possess properties that are not easily achieved with totally synthetic polymers
- (With nanocellulose) modify the surface of nanocelluose to achieve better compatibility with its environment (composites etc.) or induce various functionalities (responsivity etc.)

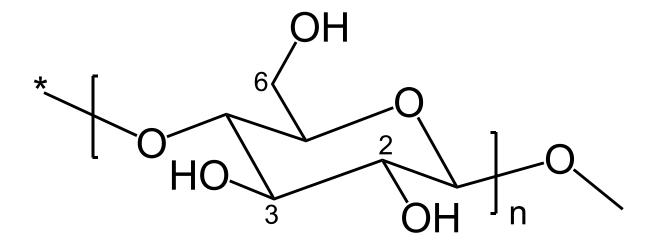
Basic concepts

• The idea of chemical modification of cellulose is to introduce functional groups in the cellulose backbone

 Usually achieved by substituting the protons in the hydroxyl groups of cellulose to a varying extent

Basic concepts

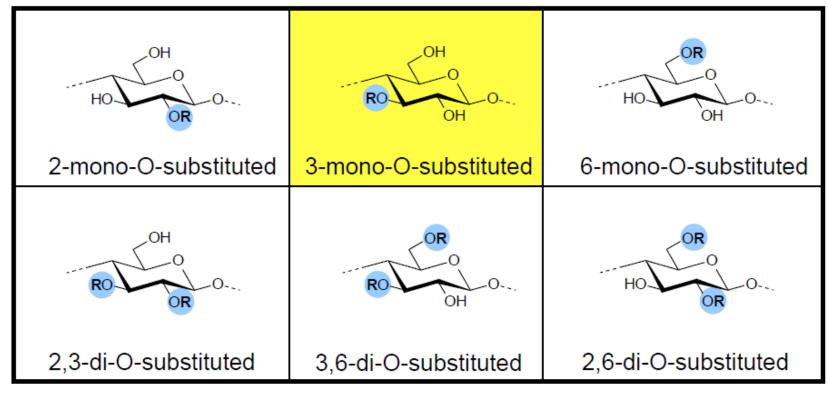
(1) Homogeneous modification


- Cellulose is dissolved and individualized cellulose chains are modified in a homogeneous solution
- → Uniform, homogeneous modification

(2) Heterogeneous modification

- Fibres, microfibrils, nanocrystals etc. are modified in a heterogeneous suspension
- → Usually results in surface modification (not necessarily)

Labelling of hydroxyl groups



Reactivity in general: 6>2>3

Basic concepts

Regioselectivity: which OH group/groups are selectively modified

Challenges

- The fundamental challenge in chemical modification of cellulose is that cellulose is relatively inert and does not automatically follow the common rules of organic chemistry
 - Example, cellulose hydroxyl groups are alcohols but they do not form esters with carboxylic acids under normal conditions
- Reproducible and uniform degree of substitution can be difficult to achieve
- Regioselectivity is often difficult to achieve

Degree of substitution (DS)

- Quality which measures the average amount of substituted hydroxyl groups in an anhydroglucose unit
- Maximum DS is 3: all 3 hydroxyl groups in all anhydroglucose units have been substituted
- On average, if one hydroxyl group per each anhydroglucose unit has been substituted, the DS is 1
- If there is only one hydroxyl group substituted per 10 anhydroglucose units, the DS is 0.1

Cellulose acetate

Carboxymethyl cellulose

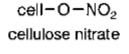
Cellulose sulphate

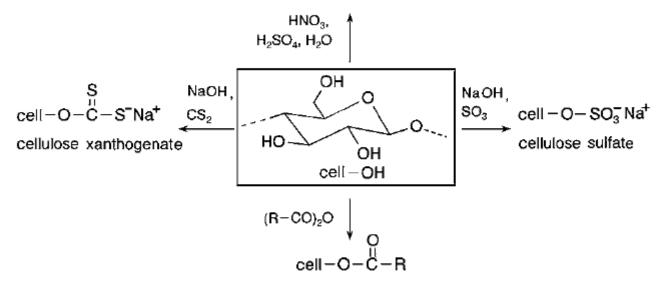
- Cellulose acetate has 39.8% (w/w) acetyl content
- What is the DS?

Aids:

Anhydroglucose (inside brackets) M=162 g/mol

Try it out:
We'll come back to this
at the beginning of next
lecture


Acetyl group M=43 g/mol



Esterification of cellulose

Commercial cellulose esters

R = CH₃; cellulose acetate (CA)

 $R = CH_3$ und $CH_2 - CH_3$: cellulose acetate propionate (CAP)

 $R = CH_3$ und $CH_2 - CH_2 - CH_3$: cellulose acetate butyrate (CAB)

Inorganic cellulose esters

- Cellulose xanthogenate
- Cellulose carbamate
- Cellulose sulphate
- Cellulose nitrate

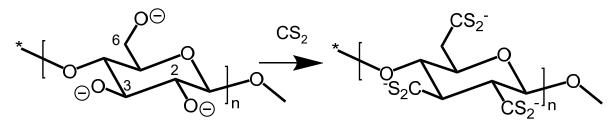
Cellulose xanthogenate

Hydroxyl groups are ionized with strong alkali

Half-ester is created by reacting alkoxy cellulose with CS₂

Cellulose xanthogenate is a half-ester, bearing charge

→ Cellulose xanthogenate is a polyelectrolyte



Cellulose xanthogenate

- The reaction is important in practice because of its use in viscose process
 - Cellulose xanthogenate is produced from native cellulose
 - Cellulose xanthogenate is dissolved
 - The dissolved xanthogenate is regenerated in acid solution, enabling controlled regenaration of cellulose into fibres and films

Cellulose xanthogenate

Examples of DS and hydroxyl selectivity at different stages of viscose process

Xanthogenated cellulose material	DS at C-2/C-3	DS at C-6
Fiber xanthogenate (DS 0.61)	0.38	0.17
Viscose, non-ripened (DS 0.58)	0.34	0.24
Viscose, moderately ripened (DS 0.49)	0.16	0.32
Viscose, extensively ripened (DS 0.28)	0	0.32

Klemm et al. *Comprehensive Cellulose Chemistry* Vol. 2, Wiley-VCH, 1998.

Cellulose carbamate

- High temperature reaction (~140°): processed above the melting point of urea
- Catalyzed by metal salts, particularly zinc sulphate is used
- Urea forms isocyanic acid which is the actual reagent with cellulose:

Cellulose carbamate

OH
$$O + NH_2 - C - NH_2$$

$$R: H \text{ or } -C - NH_2$$

$$R: H \text{ or } -C - NH_2$$

- Cellulose carbamate with DS 0.2-0.3 can be dissolved in aqueous NaOH
- Basis for the CarbaCell process:
 - Aimed at substituting the environmentally hazardous viscose process
 - Enabled by the effortless conversion of carbamate into cellulose in alkali
 - No commercial applications as of yet

Cellulose sulphate

*
$$H_2SO_4$$
 * OHO OH

- Can be prepared in a large variety of systems, usually containing either SO₃ or sulphuric acid
- Water soluble at above DS 0.2-0.3
- Preparation is generally accompanied by severe chain degradation due to acid hydrolysis
- Biomedical applications proposed

Cellulose nitrate

- Traditionally produced in a ternary system: HNO₃/H₂SO₄/H₂O
- Nitrogen contents of commercial cellulose nitrates range from 10.5-13.6%

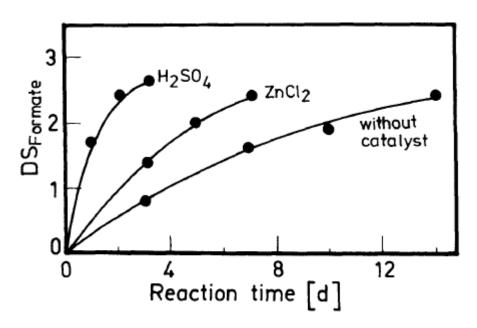
Cellulose nitrate

Applications

- Celluloid (combs, hair ornaments, ping pong balls)
- Explosives (nitrogen content above 12.6%)
- Filters, membranes
- Component in lacquers

Organic cellulose esters

- Cellulose formate
- Cellulose acetate

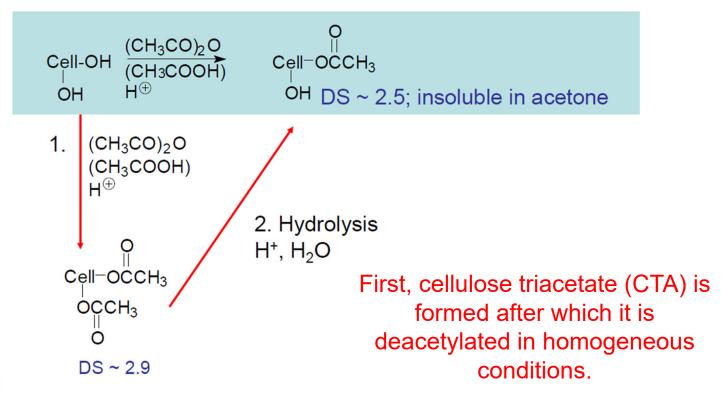

Cellulose formate

- Among the only organic esterifications that proceed spontaneously with the free acid itself
- Cellulose formate is unstable: cellulose formate with DS 2.0-2.5 is decomposed to cellulose and formic acid in 10 h in boiling water

Cellulose formate

Effect of catalyst on formation

 Very high DS values of cellulose formate can be achieved



Cellulose acetate

- Cellulose acetylation proceeds with acetic anhydride and a suitable catalyst in water-free conditions
- Acetic acid alone is not sufficient to acetylate cellulose

Cellulose acetate (DS 2.5) Commercial synthesis

Cellulose acetate solubility

Strong dependence on DS and position

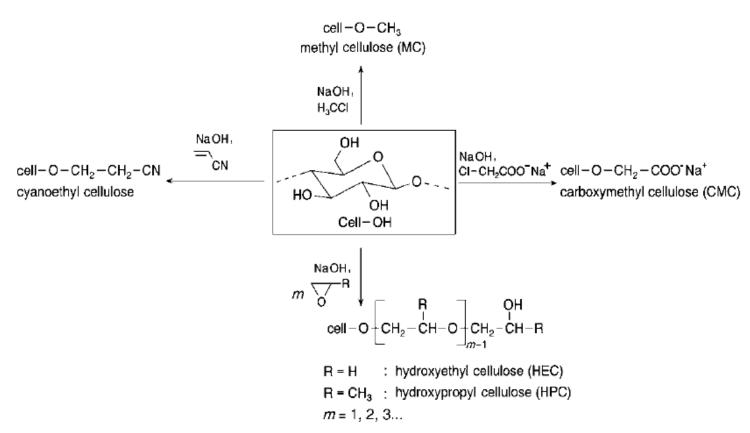
Liquid	DS_{Ac} range of solubility for partially deacetylated cellulose acetate		
	in C-2/-3/-6 position ^a	in C-2/-3 position ^b	
Water	0.8-1.0	insoluble	
DMF	1.8 - 2.7	1.3-2.8	
Acetone ($< 0.01 \% H_2O$)	insoluble	insoluble	
Acetone (1 % H ₂ O)	2.3–2.6	2.5–2.6	
Pyridine	0.8 - 2.7	1.2–2.8	
Pyridine/ $H_2O(1:1 \text{ v/v})$	0.6–2.0	1.2–1.6	
Ethyl lactate	1.6–2.7	2.6–2.8	

Klemm et al. *Comprehensive Cellulose Chemistry* Vol. 2, Wiley-VCH, 1998.

Cellulose acetate

Applications

- Coatings (LCD displays)
- Photographic films
- Thermoplastic compounds
- Isolation foils
- Cigarette filters



Cellulose ethers

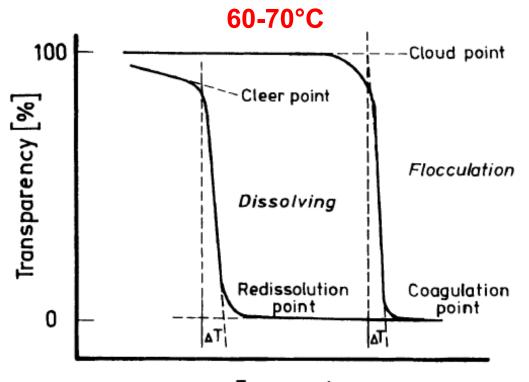
- Methyl cellulose
- Carboxymethyl cellulose

Commercial cellulose ethers

Methyl cellulose

Hydroxyl groups are ionized with strong alkali

- Conventional preparation by Williamson reaction with gaseous or liquid chloroform (S_N2 type nucleophilic substitution)
- 40% NaOH used in the industrial procedure (heterogeneous reaction)
- Methylation performed at ca. 70-90°C



Methyl cellulose

- DS 1.5-2.0 are produced commercially
- Water soluble at DS 1.4-2.0
- Coordination of water around hydrophobic methyl groups induces water solubility

Methyl cellulose – thermal response

Between DS 1.7-2.3

- Solubility is temperature sensitive.
- Gels form above a critical temperature and the gelation is reversible.

Klemm et al. *Comprehensive Cellulose Chemistry* Vol. 2, Wiley-VCH, 1998.

Methyl cellulose applications

Application area	Proportion (%)
Building industry	47
Dispersion paints	21
Wall paper paints	14
Cosmetics	5
Polymerization	5
Detergents	4
Other	4

 Generally produced by a substitution reaction of monochloroacetic acid to alkoxy cellulose

* NaOH * O
$$\ominus$$
 NaOH * O \ominus O \ominus NaOH * O \ominus OCH₂COO- OCH₂COO- OCH₂COO-

- 20-30% NaOH concentration
- Temperature 50-70°C
- Exothermic process
- Heterogeneous process in water/isopropanol (or water/tbutanol)

- Commercial grades possess DS values 0.4-0.8
- CMC is water-soluble when DS>0.4
- Aqueous CMC solution does not usually represent a complete dissolution down to the molecular level

- Purified CMC
 - CMC-content min. 98 %

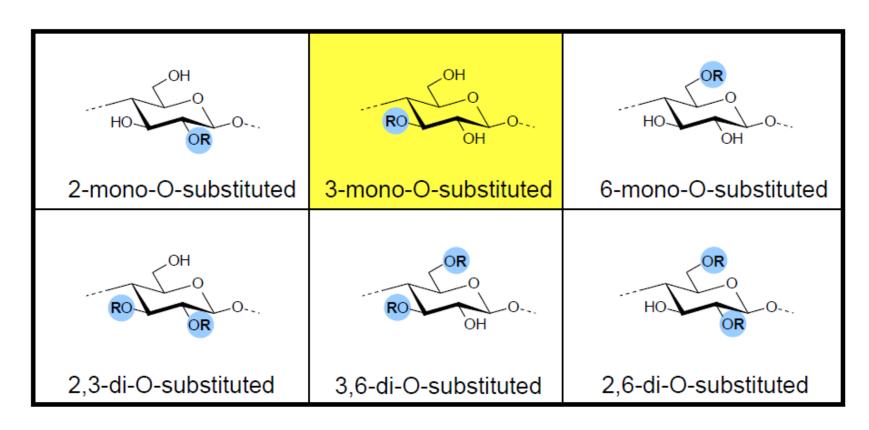
• CMC-content min. 99,5 %

- Technical CMC
 - CMC-content 55 75 %

- Main application areas
 - paper and board
 - oil drilling
 - · paints
 - mining
- Main application areas
 - food
 - dental
 - pharmaceutical
- Main application areas
 - detergent
 - · oil drilling
 - paper and board
 - mining
 - construction

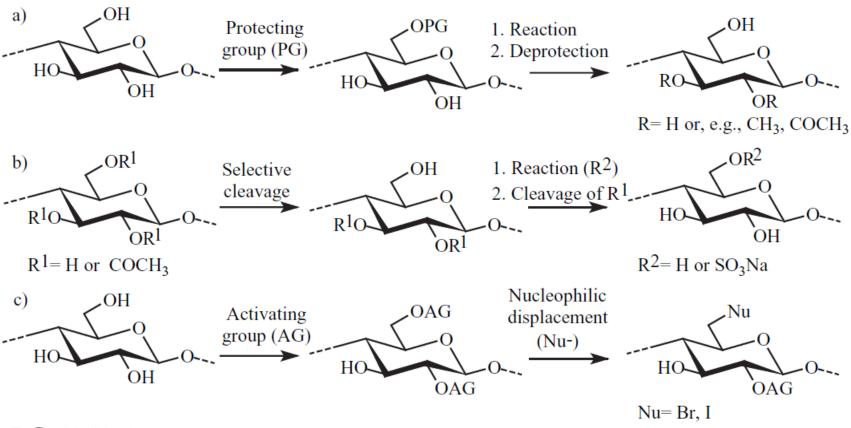
Information from CPKelco

Regioselective modification of cellulose



Regioselectivity issues

- Generally, cellulose hydroxyl groups react in the order O6>O2>O3
- Reactivity of different hydroxyl groups can be tuned by reaction conditions but they are rarely exclusive
- Regioselective synthesis applies various pathways to achieve nearly complete regioselectivity of certain OH group / groups
- Regioselectively prepared cellulose derivatives yield information on the structure-property relationship of polysaccharides and the function of the different hydroxyls on cellulose



Regioselectivity nomenclature

Pathways to regioselectivity

Protective group: trityl

One of the most popular protective groups for regioselective modification is triphenylmethyl (trityl)

6-mono-O-methyl cellulose

OH O
$$(C_6H_5)_3C_7C_1$$
 OC $(C_6H_5)_3$ $CH_2=CHCH_2CI$, OC $(C_6H_5)_3$ OC

Kondo et al. Carbohydr. Res. 1993, 238, 231.

Summary

- Organic esterification of cellulose requires a more reactive reagent than carboxylic acid, such as acetic anhydride
- Etherification of cellulose proceeds generally via alkoxy ion, generated with harsh alkaline conditions
- Regioselective cellulose modification is a modern trend; it is an important scientific advance in cellulose modification

