

Lecture 1: What exactly is a plasma?

Today's menu

- Saha equation and definition of plasma
- Debye length & plasma sheath
- Plasma frequency
- Concept of quasineutrality
- Plasma parameter
- Weakly and strongly coupled plasmas
- Examples of plasma

Different states of matter

Consider H_2O :

- $T < 0^{\circ}C$ \rightarrow ice = solid state
- $0^{\circ}C < T < 100^{\circ}C$ \rightarrow water = liquid state
- $T > 100^{\circ}C$ → vapor = gaseous state

Moving from one state to another happens via *phase transitions* where energy is either released or absorbed by the system: *latent heat*

Is 3 states of matter the best we can do?

What happens if we further heat the system = pump energy into it?

i.e., is there a possibility of moving yet to another, *qualitatively different* state of matter?

What can happen to a material that has already been broken to its basic constituents, i.e., atoms?

… atoms are *not* basic constituents of matter…

So let's go a step deeper in …

Qualitative considerations

Aalto University School of Science

From gas to plasma

- In each state of matter, the constituents are bound together with different interactions that are broken by additional energy introduced to the system.
- In gas, there are no binding interactions between the constituents or,what we have so far *considered* basic consitutents !
- Consider the simpliest element, hydrogen:

Atom $= e + i$ on

Ionization energy = 13.6 eV

The gas would thus need to be heated to 16 000 K to rip off the electrons ...

Note: the temperature unit in plasma physics

For units of temperature, eV is the natural one because it is the *energy* that is relevant, not temperature as we experience it

- Ionization energies
- Maxwellian distribution
- Conversions:
	- $1 \text{ eV} \approx 1.6 \cdot 10^{-19} \text{ J}$
	- $k_B \approx 1.4 \cdot 10^{-23}$ J/K $\approx 8.6 \cdot 10^{-5}$ eV/K

Thus we shall replace $k_B T$ by just T – and understand that it is in eV

The Saha equation

- If the temperature is not far above that corresponding to ionization energy, the competing process, *recombination*, makes the matter consist of both neutral and charged particles, i.e., be *partially ionized*.
- The degree of ionization is given by the Saha equation:

$$
\frac{n_i}{n_n} \approx 3 \cdot 10^{27} T^{3/2} n_i^{-1} e^{-U_i/T}
$$

where $U_i = ionization$ energy and $[T] = eV$.

The physics of Saha

- Ionization requires strong head-on collisions
- Velocity distribution in a gas = Maxwellian
	- \rightarrow # of particles with $E_{kin} > U_i$ depends exponentially on *T*
- Recombination rate depends on # of electrons $n_e \sim n_i$
	- \rightarrow $1/n_i$ dependence due to recombination
		- \rightarrow n_i starts to rapidly increase when $T \rightarrow U_i$, but is limited by 'itself', i.e., by recombination

Usual air (mostly nitrogen) in room temperature, *T =* 20∘ *:*

- 20∘ *~ 0,03 eV:*
- $U_i(N) \sim 14,5 \text{ eV}$ $\rightarrow n_i$
- $n_n \sim 3 \times 10^{25} \text{ m}^{-3}$

Interstellar (hydrogen) *plasma*:

- *T ~* 10 − 20∘ *~ 0,002 eV*
- $n_n \sim 1 \, \text{cm}^{-3}$
- → ionization is rare, but recombination is even rarer!!! → plasma

$$
\Rightarrow n_i/n_n \sim 10^{-122} \sim 0
$$

Lagoon nebula *(ESO)*

Intuitive look at plasma as a state of matter

Why consider plasma as a separate state of matter? Isn't it just one kind of gas?

What distinguishes different states of matter:

nature of interactions !!!

- 1. Solid:
	- Fixed structure due to *strong* bonds = ES interactions between *nearest* neighbors: strong means *Ekin << Ubond*

... Fluids …

- 2. Liquid:
	- $E_{kin} \rightarrow U_{bond} \rightarrow$ some mobility but still sticking together
- 3. Gas:
	- $E_{kin} > U_{bond}$ independent (neutral) constituents, interactions via head-on collisions
- 4. Plasma:
	- $E_{kin} > U_i$ \rightarrow Charged particles \rightarrow *Coulomb interactions* with *infinite range, 1/r*
- \rightarrow In this sense plasma is more fundamentally different from the other states of matter than those are from each other!

STATE OF MATTER

The concept of a *fluid*

Why then is it common to lump plasmas together with liquids & gases and call them *fluids?*

Consider and attractive 'girl/man/person' in a pub.

If you enter the pub after her, you probably won't notice her/him/ $X - (s)$ he is surrounded by other 'men/women/persons' \rightarrow (s)he is *shielded*.

The same happens in plasmas: free charges are shielded, $\Phi_{Coulomb} \propto \frac{e}{\tau}$ $-\frac{r}{1}$ λ_{D} \boldsymbol{r}

 \rightarrow In some considerations the plasma can be treated almost like a regular gas, i.e., forget the long range interactions

INTERMEDIATE NOTE: *do not sneer at people in the past…*

See how far the ancient Greeks got without advanced math and modern measuring instruments …

Do not under-estimate the power of thinking !

Earth

Water

Air

Fire

16

Any gas be partially ionized… when should it be considered a plasma?

The definition of a plasma is not given as a critical number for the Saha equation but, rather, in a more complicated manner:

"A plasma is a quasineutral gas of charged particles which exhibits collective behaviour"

- *Collective behaviour* = motions that depend not only on the local conditions but also on the state of the plasma in more remote regions
- *Quasineutrality:* over-all neutrality allowing local charge non-uniformities

Getting more quantitative …

Aalto University School of Science

Debye length

- We already saw what happens to an attractive *person* in a pub.
- The 'shielding distance' λ_D , is called the *Debye length.*
- This shielding is also important in *plasma diagnostics*, e.g. when measuring something with metal probes inserted to plasma.

From Debye length to plasma sheath

- Assume 'cold' plasma:
	- Here 'cold' means *no thermal motion*
	- \rightarrow Shielding charges just sit there
	- \rightarrow Perfect shielding
- $T \neq 0$
	- Allow thermal motion
	- \rightarrow Potentials of the order of $k_B T$ can leak into the plasma
	- \rightarrow $\boldsymbol{E} \neq 0$ within the *sheath region* ...

Width of the sheath region?

- For simplicity, take a 1D situation
- *mⁱ /m^e ~ 2000*

 \rightarrow assume ions fixed, electrons mobile

- Poisson equation: $\nabla \cdot \boldsymbol{E} = \frac{\rho}{c}$ ε_0 $\leftrightarrow -\frac{d^2\Phi}{d^2x}$ d^2x $=\frac{1}{2}$ ε_0 $e(n_i - n_e)$
- Electron velocity distribution when electrostatic potential Φ is present:

$$
f(x, v) = Ae^{-E_{tot}/T} = Ae^{-(\frac{1}{2}mv^2 - e\Phi(x))/T}
$$

• Infinitely far from the probe Φ =0 \blacktriangleright $n_e(\infty)$ = $A \int_{-\infty}^{\infty} e^{-({\frac{1}{2}})}$ $\frac{1}{2}mv^2$)/T $\sum_{-\infty}^{\infty} e^{-(\frac{1}{2}mv^2)/T} dv = n_i \equiv n_0$ −∞

Sheath = Debye!

So we have $n_e(x) = n_0 e^{e\Phi(x)/T}$

'Far enough' from the plate (finding the range of electric field): $\frac{e\Phi(x)}{x}$ \overline{T} ≪ 1

$$
\varepsilon_0 \frac{d^2 \Phi}{d^2 x} \approx en_0 \left(1 + \frac{e \Phi(x)}{T} + \frac{1}{2} \left(\frac{e \Phi(x)}{T}\right)^2 + \dots - 1\right) ; \text{ Taylor expansion}
$$

Keep only the 1st order:

$$
\varepsilon_0 \frac{d^2 \Phi}{d^2 x} \approx e n_0 \frac{e \Phi(x)}{T} \implies \Phi(x) \approx \Phi_0 e^{-\frac{x}{\lambda_D}}
$$

Where $\lambda_D^2 = \frac{\varepsilon_0 T}{e^2 n}$ e^2n_0 is the *Debye length*(*) *–* and the extent of the *plasma sheath*

(*) *(also obtained for the girl-in-the-pub: HW)*

Observations on Debye length/sheath

$$
\lambda_D = \sqrt{\frac{\varepsilon_0 T}{e^2 n_0}}
$$

- Debye length/sheath is large when
	- temperature is high \rightarrow thermal motion allows for large excursions
	- Density is small \rightarrow need large distance to accumulate the enough electrons to cause the shielding
- Debye length/sheath is small when
	- *Reverse the above arguments*

Usefulness of Debye length

Charge imbalances thus occur only in the scale of λ_D

- A collection of charged particles behave like a plasma only if $\lambda_D \ll L$, where L is the size of the plasma/scale of the phenomenon
	- Any local charge concentrations and/or external potentials are shielded out within $\lambda_D \ll L$
	- \rightarrow Bulk of the plasma is free of large scale potential differences:

 $\nabla^2 \Phi = \frac{\rho}{c}$ ε_0 $\approx 0 \rightarrow n_e \approx n_i$; difference typically of the order 10^{-6}

This common density $n_e \approx n_i \equiv n_0$ is called the **plasma density**

The concept of quasineutrality

Plasma is *quasineutral*, which means that

Plasma is neutral enough to assume $n_e \approx n_i \equiv n_0$ *but not so neutral as to eliminate all electromagnetic forces*

This can be satisfied when $0 < \lambda_D \ll L$: then potentials $\Phi \sim T$ can easily be introduced by small charge imbalances

Weakly and strongly coupled plasmas

Criterion for a plasma includes the size of the plasma… inconvenient → Let's look at a collection of charged particles in a different way:

- Inter-particle distance : $r_d = n_0^{-1/3}$
- 'interaction' distance = distance of classical closest approach, r_c : 1 2 $mv^2 =$ e^2 $4\pi\varepsilon_0r_C$ \rightarrow $r_C =$ e^2 $4\pi\varepsilon_0T$ $; \, < E_{kin} > 0$
	- \bullet $\frac{r_d}{r_d}$ $r_{\mathcal{C}}$ \ll 1: particles closer than r_{C} of each other \rightarrow continuous *strong* interaction
	- ◆ Strongly coupled plasma (only in some astrophysical objects)
	- \bullet $\frac{r_d}{r_d}$ $r_{\mathcal{C}}$ \gg 1: only occasional (strong) interaction, $r_{\mathcal{C}}$ has some relevance
	- *Weakly coupled plasma* (dominated by *small-angle* Coulomb scattering …)

Plasma parameter

Let us introduce a new parameter,

$$
\Lambda \equiv \frac{1}{\sqrt{4\pi}} \left(\frac{r_d}{r_c}\right)^{3/2}
$$

You will show that this can also be written as

$$
\Lambda = \frac{4}{3} n_0 \pi \lambda_D^3,
$$

i.e., Λ gives the # of particles in a Debye sphere!

- Weakly coupled plasma: Λ ≫ 1, *'genuine'* plasma
- Strongly coupled plasma: $\Lambda \ll 1$, resembles liquids

\rightarrow size-independent plasma criteria: $\Lambda \gg 1$

As if this wasn't enough…

Recall the definition of plasma: two things are required

- 1. Quasineutrality (which we just addressed), and
- 2. *collective phenomena…*

Phenomenologically, what sets a plasma apart from the other states of matter is its ability to generate and sustain *collective phenomena.*

Example of a collective phenomenon

- Move a slab of electrons by δx .
- \rightarrow At the faces of the 'deprived' region there will be a surface charge $+\sigma$ (right) and $-\sigma$ (left): $\sigma = en_0 \delta x$
- Use Gauss' law to obtain $E_x : E_x = \sigma/\varepsilon_0$
- \rightarrow Restoring force for each electron in the slab:

$$
m_e \frac{d^2 \delta x}{dt^2} = -eE_x \leftrightarrow \frac{d^2 \delta x}{dt^2} = -\frac{e^2 n_0}{m_e \varepsilon_0} \delta x
$$

$$
\Rightarrow \delta x = \delta x_0 \sin \omega_p t \text{ or } \delta x_0 \cos \omega_p t
$$

Plasma responds by oscillating at *plasma frequency* $\omega_p^2 \equiv$ $e^2 n_0$ $m_e \varepsilon_0$

Yet another requirement for plasma…

For a plasma to behave like a plasma, ω_p has to be its highest frequency. Plasma oscillations (= collective phenomenon) is inhibited (= screwed up) if *collision frequency* is higher than the plasma frequency

 For a collection of charges to be called a plasma, the collisions have to occur on a time scale slower than $\omega_p{}^{-1}$.

Otherwise the dynamics is collision dominated and no collective phenomena can occur due to randomization by collisions.

This is why, for instance, the ionized gas in a jet exhaust is *not* a plasma.

Prerequisites to be called a plasma

1. $\lambda_D \ll L$ 2. $\Lambda \gg 1$ 3. $\omega_p \tau_{coll} \gg 1$

Distinguishing features of plasma state

- Electrically conductive, can generate electrical currents and magnetic fields
- Responds strongly to electromagnetic fields
- Each particle influences *simultaneously* many nearby particles leading to collective behaviour

Plasma is very different from a regular gas

Gas vs plasma in a nutshell

Examples of plasmas

Aalto University School of Science

99% of the universe …

- **lightning**
- welding torch
- plasma ball
- fusion plasmas
- magnetosphere around Earth
- solar wind
- sun & other stars
- interstellar space

