
Functions in Python

Functions

4

Parameters

Return values Things to remember

3

1 2

Agenda

def main():
for day in range(1,366):

if day%7 == 0:
if checkJayJay == True:

FillACup()
PourWater()

if checkGeorge == True:
FillACup()
PourWater()

main()

George
Jay-Jay

Anita

def main():
for day in range(1,366):

if day%7 == 0:
WaterPlants()

def WaterPlants():
if checkJayJay == True:

Water()
if checkGeorge == True:

Water()

def Water():
FillACup()
PourWater()

main()

George
Jay-Jay

Anita

Functions

1

Functions
def buyProducts():

buyEggs()
buyFlour()
buyMilk()
buySugar()
print("Go on now!")

buyProducts()

def buyMilk():
cost_big = 1.2
cost_small = 0.9
litres_needed = 0.5
if litres_needed <= 0.5:

print("Buy a small pack of milk
for",cost_small,"eur.")

else:
print("Buy a big pack of milk

for",cost_big,"eur.")

def buyEggs():
cost_big = 2.3
cost_small = 1.4
eggs_needed = 2
if eggs_needed <= 6:

print("Buy a small pack of eggs
for",cost_small,"eur.")

else:
print("Buy a big pack of eggs

for",cost_big,"eur.")

def buyFlour():
cost = 2.7
print("Buy flour for",cost,"eur.")

def buySugar():
cost = 3
print("Buy sugar for",cost,"eur.")

presemo.aalto.fi/functions

Go to:

What is the output?
def buyProducts():

buyEggs()
#buyFlour()
buyMilk()
#buySugar()
print("Go on now!")

buyProducts()

def buyMilk():
cost_big = 1.2
cost_small = 0.9
litres_needed = 0.5
if litres_needed <= 0.5:

print("Buy a small pack of milk
for",cost_small,"eur.")

else:
print("Buy a big pack of milk

for",cost_big,"eur.")

def buyEggs():
cost_big = 2.3
cost_small = 1.4
eggs_needed = 2
if eggs_needed <= 6:

print("Buy a small pack of eggs
for",cost_small,"eur.")

else:
print("Buy a big pack of eggs

for",cost_big,"eur.")

def buyFlour():
cost = 2.7
print("Buy flour for",cost,"eur.")

def buySugar():
cost = 3
print("Buy sugar for",cost,"eur.")

Parameters

2

Parameters
def buyProducts():

buyEggs(3)
buyFlour()
buyMilk(0.75)
buySugar()
print("Go on now!")

buyProducts()

def buyMilk(litres_needed):
cost_big = 1.2
cost_small = 0.9
if litres_needed <= 0.5:

print("Buy a small pack of milk
for",cost_small,"eur.")

else:
print("Buy big pack of milk

for",cost_big,"eur.")

def buyEggs(eggs_needed):
cost_big = 2.3
cost_small = 1.4
if eggs_needed <= 6:

print("Buy a small pack of eggs
for",cost_small,"eur.")

else:
print("Buy big pack of eggs

for",cost_big,"eur.")

def buyFlour():
cost = 2.7
print("Buy flour for",cost,"eur.")

def buySugar():
cost = 3
print("Buy sugar for",cost,"eur.")

Parameters
def buyProducts():

buyEggs(3)
buyFlour()
buyMilk(0.75)
buySugar()
print("Go on now!")

buyProducts()

def buyMilk(amount):
cost_big = 1.2
cost_small = 0.9
if amount <= 0.5:

print("Buy a small pack of milk
for",cost_small,"eur.")

else:
print("Buy big pack of milk

for",cost_big,"eur.")

def buyEggs(amount):
cost_big = 2.3
cost_small = 1.4
if amount <= 6:

print("Buy a small pack of eggs
for",cost_small,"eur.")

else:
print("Buy big pack of eggs

for",cost_big,"eur.")

def buyFlour():
cost = 2.7
print("Buy flour for",cost,"eur.")

def buySugar():
cost = 3
print("Buy sugar for",cost,"eur.")

Stretching break!

Return values

3

Return values
def buyProducts():

size, price = buyEggs(3)
print("Buy a",size,"pack of eggs

for",price,"eur.")
volume, price = buyMilk(0.75)
print("Buy a",volume,"pack of milk

for",price,"eur.")
buyFlour()
buySugar()
print("Go on now!")

buyProducts()

def buyMilk(amount):
cost_big = 1.2
cost_small = 0.9
if amount <= 0.5:

size="small"
cost=cost_small

else:
size="big"
cost=cost_big

return size, cost

def buyEggs(amount):
cost_big = 2.3
cost_small = 1.4
if amount <= 6:

size="small"
cost=cost_small

else:
size="big"
cost=cost_big

return size, cost

def buyFlour():
cost = 2.7
print("Buy flour for",cost,"eur.")

def buySugar():
cost = 3
print("Buy sugar for",cost,"eur.")

Can we simplify it?
def buyProducts():

size, price = buyEggs(3)
print("Buy a",size,"pack of eggs

for",price,"eur.")
volume, price = buyMilk(0.75)
print("Buy a",volume,"pack of milk

for",price,"eur.")
buyFlour()
buySugar()
print("Go on now!")

buyProducts()

def buyMilk(amount):
cost_big = 1.2
cost_small = 0.9
if amount <= 0.5:

return "small", cost_small
else:

return "big", cost_big

def buyEggs(amount):
cost_big = 2.3
cost_small = 1.4
if amount <= 6:

return "small", cost_small
else:

return "big", cost_big

def buyFlour():
cost = 2.7
print("Buy flour for",cost,"eur.")

def buySugar():
cost = 3
print("Buy sugar for",cost,"eur.")

And even simpler?
def buyProducts():

size, price = buyEggs(3)
print("Buy a",size,"pack of eggs

for",price,"eur.")
volume, price = buyMilk(0.75)
print("Buy a",volume,"pack of milk

for",price,"eur.")
buyFlour()
buySugar()
print("Go on now!")

buyProducts()

def buyMilk(amount):
if amount <= 0.5:

return "small", 0.9
else:

return "big", 1.2

def buyEggs(amount):
if amount <= 6:

return "small", 1.4
else:

return "big", 2.3
def buyFlour():

print("Buy flour for 2.7 eur.")

def buySugar():
print("Buy sugar for 3 eur.")

And as simple as that!

def buyProducts():
print("Buy a {} pack of eggs

for {} eur.".format(buyEggs(3))
print("Buy a {} pack of milk

for {} eur.".format(buyMilk(0.75))
buyFlour()
buySugar()
print("Go on now!")

buyProducts()

def buyMilk(amount):
if amount <= 0.5:

return "small", 0.9
else:

return "big", 1.2

def buyEggs(amount):
if amount <= 6:

return "small", 1.4
else:

return "big", 2.3
def buyFlour():

print("Buy flour for 2.7 eur.")

def buySugar():
print("Buy sugar for 3 eur.")

presemo.aalto.fi/functions

Go to:

Which program is incorrect and why?

def travellingMode(distance,destination,bridge):
if destination== "island" and bridge==False:

if distance <= 30:
return "kayak"

else:
return "nothing"

else:
return "bike"

def travelling():
distance = 15
destination = "island"
isBridge = False
print("You can travel to a {} by means of

{}.".format(destination,
travellingMode(distance,
destination, isBridge))

travelling()

def travellingMode(distance,destination,bridge):
if destination== "island" and bridge==False:

if distance <= 30:
mode = "kayak"

else:
mode = "nothing"

else:
mode = "bike"

return mode

def travelling():
distance = 15
destination = "island"
isBridge = False
mode=travellingMode(distance, destination,

isBridge)
print("You can travel to a {} by means of

{}.".format(destination, mode))

travelling()

A B

Things to remember

4

FUNCTIONS

● Let's admit, we are lazy. We want to simplify and automatise things.

● Divide and conquer: one function - one task!

● A variable defined in a function remains in the function (do not mix up
with returning values) and does not affect a variable with the same
name in another function.

PARAMETERS

● One can give no, one or multiple parameters, like this:

def main():
#some code

main()

def MyFunc(some_variable):
print(some_variable+1)

MyFunc(55)

def MyFunc(a,b):
print(a+b)

MyFunc(5,10)

PARAMETERS

● The first rule of a parameter function: [almost] everything that is done to
a parameter inside that function remains a secret for other functions 🤫
In other words, parameters are "local variables", inherent only to that
specific function.

def IDoWhatIWantWithX(x):
x=x+10
print(x)

def MeToo(x):
x=x/10+5
print(x*2)

This x 😁: "I am different from you!"*

That x 🙄: "I know!" *Even though they sometimes can
be equal to the same value

PARAMETERS

● Parameters passed to a function can be of different types: integer ,
string , float, list, etc. You can use their combinations according to
your taste needs.

def cheekyFunction(coolList, fancyInteger, funkyString):
#some code

cheekyFunction(["c","o","o","l"], 7, "Let's party!")

PARAMETERS

● Parameters passed to a function can be values stored in variables or
values given directly, or expressions like this:

def print_score(num,name):
print("Your score is {} out of 10, {}!".format(num, name))

def main():
score=10
someone="Barbara"
print_score(score, "Visa")
print_score(score, someone)
print_score(9, "Mary")
print_score(10-2, "John")

main()

RETURN VALUES

● One can return no, one or multiple values, like this:

def main():
#some code

main() #traditionally, main function never returns anything

def MyFunc(some_variable):
some_variable-=1
return some_variable

num = MyFunc(55)

def MyFunc(a,b):
a+=2
b=a+b
return a,b

x, y = MyFunc(5,10)

RETURN VALUES

● Values returned by a function can be of different types: integer , string ,
float, list, etc. You can use their combinations according to your taste
needs.

def doSomething(someNumber):
fNumber=float(someNumber)
someNumber=100
randomLine="Why not to return a string?"
return fNumber, someNumber, randomLine

price,randomNum,line = doSomething(80)

RETURN VALUES

● Values returned by a function can be stored in variables, given directly, or
as a result of an expression like this:

def MyFunc(x):
x=x**2
return x, "Mind the gap!", x*0.1

num, line, anotherNum = MyFunc(5)

RETURN VALUES

● Remember, values returned by a function have to be used somehow!
Otherwise they will "hang in the air" (not to say it's bad coding).
Either save them in variables (remember to use as many of variables as
there are returned values) or print them out, or use in any other way.

def doSomething(someNumber):
fNumber=float(someNumber)
randomLine="Why not to return a string?"
return fNumber, randomLine

price,line = doSomething(80)
#OR you could do this
print(doSomething(80))
#but not this!
doSomething(80)

RETURN VALUES

● A function must return values only once! However, you still can set
conditions when to return which value, like this:

def MyFunc(x):
if x>10:

return "It's bigger than 10!"
else:

return "It's smaller than 10… Or it is 10."
print(MyFunc(5))

RETURN VALUES

● Remember not to leave condition branches 'hanging' without return-s
like this:

● Also remember that when an interpreter meets return in the function, it's
going to quit it at that spot whether you want it or not.

DO NOT DO LIKE THIS!
def MyFunc(x):

if x>10:
return "It's bigger than 10!"

line = MyFunc(5)

Fin.

