

The Lecture

- Join with Video - Makes my life nicer!
- Feel free to open your microphone and ask questions
- Feel free to write questions into the chat
- We will record the sessions and put it unlisted on youtube.

Course Information

- Mandatory Questionnaire: Deadline: Sunday 31st. 23:59 Feedback to help me improve the lecture - what do you like about it - what do you dislike about it
- You will get personal coding feedback for your code you submitted for round 4 until Thursday
- Special Session in Planning for week 44 or 45

Course Information

Team Up and you will get 50 points extra! Deadline for announcement of group (3-5) and name Thursday 28th of October

ADLINE

No lecture next week (week 43)
No exercise sessions next week
No exercise deadline next week
Don't forget the deadline for this week 21.10;)
Don't forget the deadline for your team 28.10;)
Don't forget the deadline for the questionnaire 31.10 ;)

Interactions Today:

Go to:
http://presemo.aalto.fi/csa1113

Whats the difference?

Go to:
http://presemo.aalto.fi/a1113

In Python basically everything is a reference

Thats why we can make crazy things like this (please don't ;))

> Phyton
> $a=5$
> $s=" 1$ am a string"
> $a=s$

Java
int $\mathrm{a}=5$;
string s = "I am a string";
$\mathrm{a}=\mathrm{s} \quad \zeta^{\text {compiler Error }}$
a: 5
s:"I am a string"


```
def avgTemperature2():
```

 nofDays = 5
    ```
    nofDays = 5
    temperatures = []
    temperatures = []
    for i in range(nofDays):
    for i in range(nofDays):
        temperatures.append(int(input('Enter the temperature")))
        temperatures.append(int(input('Enter the temperature")))
    sum = 0
    sum = 0
    for myTemp in temperatures:
    for myTemp in temperatures:
    sum += myTemp
    sum += myTemp
    avgTemp = sum/nofDays
    avgTemp = sum/nofDays
    print("Your average temperature is", avgTemp)
```

```
    print("Your average temperature is", avgTemp)
```

```
nofDays \(=\) value or reference?
5 = value or reference?
temperatures \(=\) value or reference?


def change_number(var):
print("Value before in change_number: ", var)
var \(=10\)
print("Value after in change_number", var)


\section*{Value before in main: 5}

Value before in change_number: 5
Value after in change_number: 10
Value after in main: 5


def change_number(var):
print("Value before in change_number: ", var) var \(=10\)
print("Value after in change_number", var)
def main():
num \(=5\)
print("Value before in main: ", num)
change_number(num)
print("Value after in main", num)

Value before in main: 5
Value before in change_number: 5
Value after in change_number: 10
Value after in main: 5


\section*{Passing parameter by Value}

def change_element(myList):
print("List before in change_element: ", myList)
myList[1] = 10
print("List after in change_element", myList)

print("List before in main: ", numList)
change_element(numList)
print("Value after in main", numList)

List before in main: [5,15,50]
List before in change_element: [5,15,50]
List after in change_element: \([5,10,50]\)
List after in main: [5, 10,50]

def change_element(myList):
print("List before in change_element: ", myList) myList[1] = 10
print("List after in change_element", myList)
def main():
numList \(=[5,15,50]\)
print("List before in main: ", numList)
change_element(numList)
print("Value after in main", numList)

List before in main: [5,15,50]
List before in change_element: [5,15,50]
List after in change_element: \([5,10,50]\)
List after in main: [5,10,50]



def change_element(myList):
print("List before in change_element: ", myList)
\(\operatorname{myList}[1]=10\)
print("List after in change_element", myList)


\section*{List before in main: \([5,15,50]\)}

List before in change_element: [5,15,50]
List after in change_element: [5,10,50]
List1 after in main: [5,15,50]
List2 after in main: [5,10,50]

def change_element(myList):
print("List before in change_element: ", myList)
myList[1] = 10
("List after in change_element", myList)
def main 0 :
numList1 \(=[5,15,50]\)
print("List before in main: ", numList1)
numList2 \(=\) numList1.copy0
change_element(numList2)
print("List1 after in main", numList1)
print ("List2 after in main", numList2)

\section*{List before in main: [5,15,50]}

List before in change_element: \([5,15,50]\)
List after in change_element: [5,10,50]
List1 after in main: [5, 15,50 ]
List2 after in main: [ \(5,10,50]\)


def change_element(myList):
print("List before in change_element: ", myList) myList[1] = 10
("List after in change_element", myList)
def main():
numList1 \(=[5,15,50]\)
print("List before in main: ", numList1)
numList2 \(=\) numList1.copy)
change_element(numList2)
print("List1 after in main", numList1)
print ("List2 after in main", numList2)

List before in main: [5,15,50]
List before in change_element: \([5,15,50]\)
List after in change_element: [5,10,50]
List1 after in main: [ \(5,15,50]\)
List2 after in main: [ \(5,10,50]\)


def change_element1(myList):
\[
\operatorname{myList}[1][1]=20
\]
def main():
\[
\begin{aligned}
& \text { numList0 }=[2,4,6] \\
& \text { numList1 }=[3,6,9] \\
& \text { numList2 }=[5,10,15]
\end{aligned}
\]

1. listOfList1 after in main: \([[20,4,6],[3,6,9],[5,10,15]]\) listOfList2 after in main: \([[20,4,6],[3,6,9],[5,10,15]]\)
2. listOfList1 after in main: \([[2,4,6],[3,6,9],[5,10,15]]\) listOfList2 after in main: \([[20,4,6],[3,6,9],[5,10,15]]\)
3. listOfList1 after in main: \([[2,4,6],[3,20,9],[5,10,15]]\) listOfList2 after in main: \([[2,4,6],[3,20,9],[5,10,15]]\)
4. listOfList1 after in main: \([[2,4,6],[3,6,9],[5,10,15]]\) listOfList1 after in main: \([[2,4,6],[3,20,9],[5,10,15]]\)
5. listOfList1 after in main: \([[2,4,6],[3,6,9],[5,10,15]]\) listOfList1 after in main: \([[2,4,6],[3,6,9],[5,10,15]]\)

def change_element1(myList):
\(\operatorname{myList}[1][1]=20\)
def main():
numList0 \(=[2,4,6]\)
numList1 \(=[3,6,9]\)
numList2 \(=[5,10,15]\)
listOfList1 \(=\) [numList1,numList2,numList3] listOfList2 \(=\) listOfList1.copy 0
change_element1 (listOfList2)
print("listOfList1 after in main", numList1) print ("listOfList2 after in main", numList2)
myList[1][1] \(=20\)
def main \():\)
numList0 \(=[2,4,6]\)
numList1 \(=[3,6,9]\)
numList2 \(=[5,10,15]\)
listOfList1 \(=[\) numList1, numList2, numList3]
listOfList2 \(=\) listOfList1.copy)
change_element1 (listOfList2)
print("listOfList1 after in main", numList1)
print ("listOfList2 after in main", numList2)




\section*{Break: Move your Shoulders}

\section*{Phonebook How?}

Lists? Ordered by number? Takes a lot of space Ordered according to names? Takes long to search!

Go to:
http://presemo.aalto.fi/a1113


\section*{How to Start a Dictionary}
```

myPhonebook = {}
myPhonebook["Alex"] = 123
myPhonebook['Babette"] = 365
myPhonebook['Carl'] = 874
or
myPhonebook = {"Alex":123, ''Babette":365,"Carl":874}

```



\section*{Break: \\ Move your Neck!}


\section*{Binary \\ Search}

Finally an Algorithm ()


How do you search?

\section*{How do you search?}

I give you a list and I tell you, that it is ordered. Where is the number 80 ?
Hint:
The list contains values from 6 to 9798
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline value & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{How do you search?}

I give you a list and I tell you, that it is ordered. Where is the number 80 ?
Hint:
The list contains values from 6 to 9798
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline value & 6 & & & & & \\
\hline
\end{tabular}

\section*{How do you search?}

I give you a list and I tell you, that it is ordered. Where is the number 80 ?
Hint:
The list contains values from 6 to 9798
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline value & 6 & & & & & & & & & & & & \\
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline value & 6 & 7 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline value & 6 & 7 & 19 & 25 & 50 & 55 & 60 & 79 & & & & & \\
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline value & 6 & 7 & 19 & 25 & 50 & 55 & 60 & 79 & 79.5 & & & & \\
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline value & 6 & 7 & 19 & 25 & 50 & 55 & 60 & 79 & 79.5 & 79.75 & 79.9 & 80 & 9798 \\
\hline
\end{tabular}

\section*{Can we search faster?}

I give you a list and I tell you, that it is ordered. Where is the numb Hint:
The list contains values from 6 to 9798
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline value & \multicolumn{9}{|c|}{} \\
\cline { 2 - 8 } & \\
\hline
\end{tabular}

\section*{Can we search faster?}

I give you a list and I tell you, that it is ordered. Where is the numb Hint:
The list contains values from 6 to 9798


\section*{Can we search faster?}

I give you a list and I tell you, that it is ordered. Where is the number 80 ? Hint:
The list contains values from 6 to 9798


\section*{Can we search faster?}

I give you a list and I tell you, that it is ordered. Where is the number 80 ? Hint:
The list contains values from 6 to 9798



\section*{Can we search faster?}

We have a sequential Algorithme (just go trough the list 1 by 1) And we have this other Algorithm.

How can we compare them? How do we know which one is better?

As it is dependent on the input (if 80 is on the first spot we find it immediately in the sequential Algorithm) we need to find a better comparison than just 1 run.

In Computer Science we often compare the worst-case scenario:
When does the Algorithm terminate with the worst possible input for THIS Algorithm?

\section*{Can we search faster?}

Why are we faster?
We halve the search area in each step instead of making it one smaller How fast are we in the worst case if \(\mathrm{n}=\) len(list) Instead of \(n=\) len(list) we have \(\log _{2} n\) steps
\begin{tabular}{|r|r|}
\hline\(n\) & \(\log _{2} n\) \\
\hline 2 & 1 \\
\hline 4 & 2 \\
\hline 8 & 3 \\
\hline 16 & 4 \\
\hline 32 & 5 \\
\hline 64 & 6 \\
\hline 128 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|}
\hline \multicolumn{1}{|c|}{\(n\)} & \(\log _{2} n\) \\
\hline 256 & 8 \\
\hline 512 & 9 \\
\hline 1024 & 10 \\
\hline 2048 & 11 \\
\hline 4096 & 12 \\
\hline 8192 & 13 \\
\hline 16384 & 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline\(n\) & \(\log _{2} n\) \\
\hline 32768 & 15 \\
\hline \(10^{6}\) & \(\sim 20\) \\
\hline \(10^{9}\) & \(\sim 30\) \\
\hline \(10^{12}\) & \(\sim 40\) \\
\hline \(10^{21}\) & \(\sim 70\) \\
\hline \(10^{30}\) & \(\sim 100\) \\
\hline\(\ldots\) & \(\ldots\) \\
\hline
\end{tabular}
"That all racte!```

