
CS-A113 Basics in
Programming Y1

8th Lecture
9.11.2021

The Lecture

• Join with Video – Makes my
life nicer!

• Feel free to open your
microphone and ask questions

• Feel free to write questions
into the chat

• We will record the sessions
and put it unlisted on youtube.

Interactions Today:

Go to:
http://presemo.aalto.fi/csa1113

http://presemo.aalto.fi/a1113

Course Information
• Exam in EXAM rooms

• 8.-21.12.
• You will need to sign up for it:

• On SISU
• AND for the EXAM

• Instructions on myCourses
• Mock-Exam available on A+

https://plus.cs.aalto.fi/cs-a1113/2021practiceexam/

• Substitute Exercises:
• 18.11 – 10-12
• Substitute as many rounds as you missed exercises
• You need to reach the passing points of the substitute

exercise, but you will only get Minimum passing points
of missed exercise
(no points are accumulated)

Topics Today

Writing

Objects

Writing to a File

How to Open and Close a File

newFile = open(”text.txt”,”w”)

newFile.write(”Woohooo, we can write \n”)

newFile.close()

Open the file

Close the file

Do some writing

How to Open and Close a File

newFile = open(”text.txt”,”a”)
myList =(”Woohooo \n”, ”we can write \n”)
newFile.writelines(myList)

newFile.close()

Open the file

Close the file

Do some writing

Why is closing files important?

How do we write?
We can only write Strings

What do you do if you want to write down calculations?

How do you get a new line?

Good to Know

• newFile.open(”text.txt”,”x”)
x = w: overwrite text.txt
x = a: append to the already existing file

• newFile.write(myString)
”\n” not added automatically
myString must be a string → convert everyting to a string before writing it

• myString = ”{} is the Answer”.format(42)

• myString = str(42) + ” is the Answer”

• newFile.close()
Very important! Otherwise maybe buffer problems → newFile.flush()

• OSError useful here as well (FileNotFoundError is a sublcass)
Covers extra permission issues or shortage of HD space

Example 1

def main1():

myFile = open(“destination.txt”,”w”)
myFile.write(“Hallo”)

A: destination.txt

Hallo

B destination.txt

#emptyFile

C: destination.txt

Line0
Line1
Hallo

Output
A: File A
B: File B
C: File C
D: FileNotFoundError
E: TypeError

destination.txt

Line0
Line1

Does this ever make sense?

def main1():

try:

myFile = open(“destination.txt”,”w”)
myFile.write(“Hallo”)

except FileNotFoundError:

FileNotFoundError: [Errno 2] No such file or directory: ”bla/text.txt”

Example 2

def main1():

myFile = open(“destination.txt”,”w”)
myFile.write(“Hallo”)
myFile.close()

A: destination.txt

Hallo

B destination.txt

#emptyFile

C: destination.txt

Line0
Line1
Hallo

Output
A: File A
B: File B
C: File C
D: FileNotFoundError
E: TypeError

destination.txt

Line0
Line1

Example 3

def main1():

myFile = open(“destination.txt”,”w”)
myFile.write(“Hallo”)
myFile.write(“Hallo”)
myFile.close()

A: destination.txt

HalloHallo

B destination.txt

#emptyFile

C: destination.txt

Hallo
Hallo

Output
A: File A
B: File B
C: File C
D: FileNotFoundError
E: TypeError

destination.txt

Line0
Line1

Example 4

def main1():

myFile = open(“destinationWrong.txt”,”a”)
myFile.write(“Hallo”)
myFile.close()

A: destinationWrong.txt

Hallo

B destinationWrong.txt

#emptyFile

C: destinationWrong.txt

Line0
Line1
Hallo

Output
A: File A
B: File B
C: File C
D: FileNotFoundError
E: TypeError

destination.txt

Line0
Line1

Example 5

def main1():

myFile = open(“destination.txt”,”a”)
myFile.write(“Hallo”)
myFile.write(42)
myFile.close()

A: destination.txt

Hallo42

B destination.txt

#emptyFile

C: destination.txt

Line0
Line1
Hallo42

Output
A: File A
B: File B
C: File C
D: FileNotFoundError
E: TypeError

destination.txt

Line0
Line1

File Writing in Practice

In general reading and writing from and to the same file is error-prone

Often you want to keep the source file unaltered

• In general: Keep source and destination files separate:
1. read in source file (to appropriate data structure), close it

2. do calculations

3. write to your destination file, close it

This will make your life easier if the program crashes

• If you have big data:
• Do not read in all of it

• save your progress every now and then (write progress to a file) in a way you can
deduce the progress

Break:
Move your Shoulders

Functional
Programming

Object Oriented Programming

How do you implement a Registry for Students

A student has

• a name

• a student number

• courses he/she is enrolled in

• grades

How do you find students?
How do you change the grades?

Group Work
Task:

Go to:
http://presemo.aalto.fi/csa1113

http://presemo.aalto.fi/a1113

Think of a Class as
a blueprint

Sewing Pattern

• S

• You can build more than
one object from it

• It describes the underlying
structure

• It is not an object itself

Class

class Student:

def _ _ init_ _(self, myName, myNumber):

self._ _ name = myName

self._ _id = myNumber

self._ _grades = []

self._ _courses = []

main():

student1 = Student(”Barbara”,”123”)

Class

class Student:

def _ _ init_ _(self, myName, myNumber):

self._ _ name = myName

self._ _id = myNumber

self._ _grades = []

self._ _courses = []

main():

student1 = Student(”Barbara”,”123”)

Student

numList1

index 0 1 2

value

5 15 50

Class

class Student:

def _ _ init_ _(self, myName, myNumber):

self._ _ name = myName

self._ _id = myNumber

self._ _grades = []

self._ _courses = []

main():

student1 = Student(”Barbara”,”123”)

student2 = Student(”Angelina”,564)

student3 = Student(”Brad”, 897)

Class

class Student:

def _ _ init_ _(self, myName, myNumber):

self._ _ name = myName

self._ _id = myNumber

self._ _grades = []

self._ _courses = []

main():

student1 = Student(”Barbara”,123)

student2 = Student(”Angelina”,564)

student3 = Student(”Brad”, 897)

studentRegistry = (student1,student2,student3)

Class

class Student:

def _ _ init_ _(self, myName, myNumber):

self._ _ name = myName

self._ _id = myNumber

self._ _grades = []

self._ _courses = []

def add_course(self,course):

self._ _courses.append(course)

main():

student1 = Student(”Barbara”,123)

student2 = Student(”Angelina”,564)

student3 = Student(”Brad”, 897)

studentRegistry = (student1,student2,student3)

student1.add_course(”Basics in Programming”)

student2.add_course(”Algorithms and Datastructures”)

Class

class Student:

def add_course(self,course):

self.__courses.append(course)

main():

student1 = Student(”Barbara”,123)

student1.add_course(”Basics in Programming”)

student2.add_course(”Algorithms and Datastructures”)

Does this look familiar?

Where did you see
something like this
already?

myList.append(”x”)

myList.sort()

myDictionary.keys()

random.randint()

§§

