SCHEDULE

	Date		Торіс
1.	Tue	14.09.	Lec-1: Introduction
2.	Fri	17.09.	Lec-2: Crystal Chemistry & Tolerance parameter
3.	Fri	17.09.	EXERCISE 1
4.	Tue	21.09.	Lec-3: Crystal chemistry & BVS
5.	Fri	24.09.	Lec-4: Symmetry & Point Groups
6.	Fri	24.09.	EXERCISE 2
7.	Tue	28.10.	Lec-4: Crystallography & Space Groups
-			
8.	Fri	01.10.	Lec-5: XRD & Reciprocal lattice
9.	Fri	01.10.	EXERCISE 3
10.	Tue	05.10.	Lec-6: ND & GI-XRD
11.	Fri	08.10.	Lec-7: Rietveld
12.	Fri	08.10	. EXERCISE 4: Rietveld
13.	Tue	12.10.	Lec-8: Synchrotron rad. & XAS & RIXS
14.	Fri	15.10.	EXAFS & Mössbauer
15.	Fri	15.10.	EXERCISE 5
16.	Tue	19.10.	Seminars: XPS, FTIR, Raman, ED, HRTEM, SEM, AFM
17.	Fri	19.10.	Lec-12: XRR
18.	Fri	22.10.	EXERCISE 6: XRR

COURSE START: Tue 14.09. at 12.15 in Zoom

EXAM: Fri Oct. 29, 2021

LECTURE 2: CRYSTAL CHEMISTRY

- Learn to "read" different types of crystal structure representations
- Concepts of coordination number (CN) and coordination polyhedron (= spatial arrangement of nearest-neighbour atoms)
- Ionic radius: dependence on CN and valence (V)
- Tolerance factor concept and utilization

EXAMPLES of "everyday" crystals/structures

Rock salt (NaCI)

NaCl single crystal

Cubic crystal structure: high symmetry, ionic bonds \rightarrow extremely stable

Snow flake: hexagonal

The same (NaCl) crystal structure can be presented in multiple ways

b

PEROVSKITE CaTiO₃

Other Examples of common crystal structures

ANATASE TiO₂

ReO₃

CRYSTAL

- Regularity of small building units in crystalline solids was predicted already in 17th century based on the beautifully symmetric shapes of macroscopic crystals
- Experimentally this was verified in 1912 by showing that crystals work as 3D diffraction gratings for X-rays (with wavelength of the same order as the distances of atoms in crystals)
- Interatomic distances in crystals are of Ångström-scale: 1 Å = 10⁻¹⁰ m = 0.1 nm
- On the right, the tiny crystal (grown from flux by my students) is a single crystal of the record-high T_c (135 K) Hg-Ba-Ca-Cu-O superconductor; crystal structure shown below

WHAT WE LIKE TO KNOW ABOUT THE CRYSTAL STRUCTURE

CRYSTALLOGRAPHY

- unit cell
- Iattice parameters
- symmetry
- space group
- number of formula units in unit cell
- etc.

CRYSTAL CHEMISTRY

- coordination numbers
- coordination polyhedra
- bond lengths/angles
- occupancy factors
- etc.

This lecture is of crystal chemistry !

NUMBER of ATOMS in UNIT CELL

- atom inside unit cell: belongs only to one unit cell \rightarrow 1
- atom on unit cell face: belongs to two unit cells \rightarrow 0.5
- atom on unit cell edge: belongs to four unit cells \rightarrow 0.25
- atom on unit cell corner: belongs to eight unit cells \rightarrow 0.125

EXAMPLES OF COORDINATION NUMBERS/POLYHEDRA

Polyhedra

Generally metal in centre and oxide or halide at vertices

Pyrochlore

Perovskite

How the atoms are located in the structure depends on:

- relative sizes of atoms/ions
- charges (oxidation states) of ions
- nature of chemical bonds (involvement of different orbitals)

NEXT WE START THE DISCUSSION ON:

- Ion size (ionic radius) and how it affects the structure

Theorists are always predicting new structures that we (experimentalists) can't make. But we keep making structures they can't predict.

IONIC RADIUS

- It is not possible to measure ionic radius values directly
- The values are estimated (using statistical techniques) for each ion from a large experimental data set for bond lengths between many pairs of two different elements in different (ionic) compounds
- These are tabulated; there are several different ionic radius tables; the most commonly used one is: R.D. Shannon, Acta Cryst. A 32, 751 (1976)
- There are relatively large diffrences in ionic radii among different ions
- For the same element, ionic radius depends on the oxidation state and coordination number

Ionic Radii - Notable Trends

- The radius increases as you move down a column.
 - Al+3 = 0.675 Å, Ga+3 = 0.760 Å, In+3 = 0.940 Å, Tl+3 = 1.025 Å
- The radius decreases as you move across a period.
 - La⁺³ = 1.172 Å, Nd⁺³ = 1.123 Å, Gd⁺³ = 1.078 Å, Lu⁺³ = 1.001 Å
- The 4d & 5d metals have similar radii due to the lanthanide contraction.
 - Nb+5 = 0.78 Å, Ta+5 = 0.78 Å, Pd+4 = 0.755 Å, Pt+4 = 0.765 Å

The cation radius decreases as you increase the oxidation state.
Mn⁺² = 0.810 Å, Mn⁺³ = 0.785 Å, Mn⁺⁴ = 0.670 Å

- The radius increases as the coordination number increases.
 - Sr⁺²: CN=6 → 1.32 Å, CN=8 → 1.40 Å, CN=10 → 1.50 Å CN=12 → 1.58 Å

Linus Pauling was the first to predict crystal structures based on relative (cation versus anion) ionic radii

Pauling's Rule for binary AB compounds

$r_{c}/r_{A} < 0.155$	CN = 2
$0.155 < r_{\rm C}/r_{\rm A} < 0.225$	CN = 3
$0.225 < r_{\rm C}/r_{\rm A} < 0.414$	CN = 4
$0.414 < r_{c}/r_{A} < 0.732$	CN = 6
$0.732 < r_{c}/r_{A} < 1.00$	CN = 8
$r_{c}/r_{A} > 1.00$	CN = 12

QUESTION: what are the coordination numbers (CN) in ZnS, NaCI and CsCI?

Victor Moritz Goldschmidt (1888-1947)

Another approach: TOLERANCE FACTOR (t)

1926 Goldschmidt

V.M. Goldschmidt, "Geochemische Vertailungsgesetze der Elemente", Skrifter Norske Videnskaps-Akad, Oslo, I. Mat-Naturr. K1 (1926)

- t: measure for the degree of mismatch between two different atomic layers: at t = 1, perfect match
- Calculated from preferred bond lengths
- Preferred bond lengths are estimated from ionic radii (Shannon)
- Developed first for the perovskite structure, later extended to other structures as well
- To understand the stability of the structures and the creation of different distortions/defects (e.g. oxygen vacancies)

$$t = \frac{(r_A + r_O)}{\sqrt{2} (r_B + r_O)}$$

t = 1

t < 1

NOTE: Oxygen vacancies can be random or ordered (as below)

t > 1

IDEAL

Changes in atomic positions

Oxygen deficiency FOR METAL OXIDES, defects are usually discussed in terms of oxygen nonstoichiometry

- (1) Interstitial oxygen atoms
 - La₂CuO_{4+δ}
- (2) Cation vacancies
 - $La_{1-x}Mn_{1-x}O_3$
- (3) Oxygen vacancies
 - YBa₂Cu₃O_{7-δ}
- (4) Interstitial cations
 - Zn_{1+x}O

YBa₂Cu₃O_{7- δ} (or Ba₂YCu(1)Cu(2)₂O_{7- δ} to more properly reflect the structure) is a notorious example of the huge impact of oxygen (non)stoichiometry

Phase Diagram of High-T_c Superconductors

Oxygen content in $YBa_2Cu_3O_{7-\delta}$ controls the valence state of copper, and thereby the superconductivity (Tc value)

Illustration how the YBa₂Cu₃O_{7-δ} structure is derived from the perovskite structure through cation ordering and ordered oxygen vacancies

A-site ordered & oxygen-vacancy ordered TRIPLE PEROVSKITE A'₂A"B₃O_{8 (= 9-1)}

Ba₂YCu(1)Cu(2)₂O_{7 (= 9-2)}

