

Lecture 2: Plasma particles with E and B fields

Today's Menu

- Magnetized plasma & Larmor radius
- Plasma's diamagnetism
- Charged particle in a multitude of EM fields: *drift motion*
	- *ExB* drift, gradient drift, (later: curvature drift, polarization drift, …)
- Concept of a *guiding center*
- Magnetic moment
- Magnetic mirror & Loss cone
- Adiabatic invariants 1, 2 ,3 and their usefulness

Plasmas of interest

Not only are the plasmas of our interest (space & fusion) weakly coupled, they are also *magnetized* … Why?

Aalto University School of Science

19.9.2021 3

Charged particles in magnetic field

Consider a charged particle (m, q) in a uniform magnetic field, $B = B_0 \hat{z}$.

Collect the constants into $\Omega \equiv qB_0/m$, **Larmor/cyclotron frequency** HW $\blacktriangleright v_x = v_\bot$ sin Ω t with $v_y = v_\bot$ cos Ω t (or vice versa), $v_z = v_\|$

From Science Direct *From Science Direct*

Larmor motion …

Integrate in time (HW) $\rightarrow x = \frac{v_{\perp}}{0}$ Ω sinΩt & y = $-\frac{v_{\perp}}{2}$ Ω $\cos \Omega t$

 charged particles are *gyrating* around the magnetic field line on a circle with the radius defined by their perpendicular velocity and magnetic field strength:

 (a)

ion

Larmor radius:
$$
r_L = \frac{mv_{\perp}}{qB}
$$

Notice right away (effects one-by-one):

- Strong field \rightarrow stick close to field line
- Big charge number \rightarrow stick close to field line
- Large perpendicular velocity \rightarrow large gyro radius
- Large mass \rightarrow large excursions from the field line

Magnetic field

electron

… and diamagnetism

Particles in plasma thus carry out circular motion around field lines.

A charged particle on a circular path forms a *current ring* … Ampere's law

 $\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$... recall your course in EM

→ additional magnetic field *opposite* to the background field

 A plasma is *diamagnetic (… except in some special cases…), i.e.,* tends to *reduce* the imposed magnetic field

Concept of *magnetized* **plasma**

A plasma is considered *magnetized* if the Larmor radius is much much smaller than the *scale length L* over which the magnetic field changes appreciably.

 $r_L \ll L$

Note: not exactly uniform B fields…

19.9.2021 7

How about numbers?

Let's take the physical systems from the $1st$ problem in $1st$ exercise:

- Fusion experiment, $B \sim 5$ T: $\Omega_e \approx x x x_i r_i \approx x x x_i L \approx 10$ m
- lonosphere, $B \sim 50000$ nT: $\Omega_e \approx x x x_i r_i \approx x x x_i L \approx 100$ km
- Solar wind, $B \sim 5$ nT: $\Omega_e \approx x x x$, $r_L \approx x x x$, $L \approx 10^8$ km
- Sun , $B \sim 0$?!: $\Omega_e \approx x x x$, $r_L \approx x x x$, $L \approx 10^6$ km
- Neutron star , $B \sim 10^8$ T: $\Omega_e \approx x x x$, $r_L \approx x x x$, $L \approx 10$ km

(HW?: are these plasmas magnetized?)

Charged particle motion in simple or 'simplish' fields

Aalto University School of Science

Add a uniform electric field, *E = E⁰*

 $\mathbf{E} = E_0 \hat{\mathbf{z}} \rightarrow$ simply acceleration in the direction of **B** Take *E* perpendicular to **B**, e.g., $E = E_0 \hat{x}$

Think what happens now during the gyration period …

Can this be true?

Particle seems to move in direction *perpendicular to both E and B fields!!!*

Aalto University School of Science

19.9.2021 10

Do the math …

Indeed, the particle *drifts* perpendicular to both fields! Useful concept: the *guiding center*, i.e., the 'center of gyro motion', drifts.

The $E \times B$ drift

This guiding-center drift is called the $E \times B$ drift and it has a very important role especially in fusion plasma physics.

General (vector) form: $v_{ExB} =$ $\boldsymbol{E}\!\times\!\boldsymbol{B}$ B^2

Things to notice:

- The drift does not depend on the particle everybody drifts in the same direction with the same velocity!
- This drift is not really specific to just electric field. Any external force, $E \rightarrow$ F/q , would cause such a drift $-$ but this time depending on the charge!
- *e.g.,* gravitational force

Charged particle motion in nonuniform magnetic field

Aalto University School of Science

```
Part I: \nabla B \perp B = B_0 \hat{z}
```
Choose the axes so that $\nabla B \parallel \hat{y}$

What happens now during one gyration period …

The particle is moving (= *drifting*) in direction *perpendicular to both the B field and its gradient!!!*

19.9.2021 14

Do the math …

Taylor expand the magnetic field remembering that $r_L \ll L$

$$
B_z = B_o + y \frac{\partial B_z}{\partial y} + \dots
$$

$$
F_y = -qv_xB_z(y) \approx -qv_\perp(\sin \Omega t) \left[B_o + r_L(\sin \Omega t) \frac{\partial B_z}{\partial y} \right]
$$

where *unperturbed* orbit was used to evaluate the force. Why???

Mg'ed plasma $\rightarrow \Omega$ the shortest time scale \rightarrow average over gyro period

$$
\langle \sin \Omega t \rangle = 0, \langle (\sin \Omega t)^2 \rangle = \frac{1}{2} \qquad \blacktriangleright \langle F_y \rangle = \pm \frac{1}{2} q v_{\perp} r_L \frac{\partial B_z}{\partial y}
$$

The gradient drift

So there is an effective net *force* on the particle

 \rightarrow obtain GC drift from the generalized $\bm{E} \times \bm{B}$ drift:

$$
v_{GC} = \frac{1 \mathbf{F} \times \mathbf{B}}{q \cdot B^2} = \frac{1 \mathbf{F}_y}{q \mathbf{B}_0} \hat{x} = \pm \frac{1}{2 \mathbf{B}_0} v_{\perp} r_L \frac{\partial \mathbf{B}_z}{\partial y}
$$

 \rightarrow The *gradient drift* (VB -drift) in general vector form

$$
\boldsymbol{v}_{\nabla B} = \pm \frac{1}{2} v_{\perp} r_L \frac{\boldsymbol{B} \times \nabla B}{B^2}
$$

This drift *does* depend on the charge, as indicated by the \pm sign

For axial B-field to have parallel gradient means that the field must have also a *radial* component. It can be obtained from $\nabla \cdot \mathbf{B} = 0$:

Cylindrical symmetry \rightarrow cylindrical coordinates: $\frac{1}{x}$ \boldsymbol{r} ∂ $\frac{\partial}{\partial r}(rB_r) +$ ∂B_{Z} $\frac{\partial z}{\partial z} = 0$ Assume *slowly varying* magnetic field

$$
rB_r = -\int_0^r r \frac{\partial B_z}{\partial z} dr \approx -\frac{1}{2} r^2 \left[\frac{\partial B_z}{\partial z} \right]_{r=0} \implies B_r \approx -\frac{1}{2} r \left[\frac{\partial B_z}{\partial z} \right]_{r=0}
$$

Non-uniformity in $r \rightarrow$ gradient drift in *poloidal direction*. No problem. \odot

Full Lorentz force in cylindrical coordinates

 $F_r = q v_\theta B_z$

 $F_{\theta} = q(v_zB_r)(v_rB_z)$

 $F_z = -qv_{\theta}B_r$

- The 1st term in F_{θ} causes a radial drift that forces the particle to follow the bending field lines
- The new physics is brought about by $F_z.$
- For simplicity, study a particle "on" the axis, $r_{GC} = 0$:

$$
F_z = -qv_{\perp} \frac{1}{2} r_L \left[\frac{\partial B_z}{\partial z} \right]_{r=0}
$$

Gyro motion

around the fieldline

Magnetic force along the field …

$$
r_L = m v_\perp / qB \implies F_Z = -\frac{1}{2} \frac{m v_\perp^2}{B} \left[\frac{\partial B_Z}{\partial z} \right] = -\mu \left[\frac{\partial B_Z}{\partial z} \right]
$$

where $\mu \equiv \frac{1}{2}$ 2 mv_{\perp}^2 \boldsymbol{B} is the so-called *magnetic moment* of the particle. General (vector) form: $\mathbf{F}_{\parallel} = -\mu \nabla_{\parallel} B$ Note:

- *μ* can be understood as the magnetic moment due to the current loop created by the gyrating particle (HW)
- The force causes a braking action when particle moves towards higher field …

Now we have a bunch of drifts… What next?

Aalto University

Magnetic mirrors …

"Magnetic bottle": first attempt to magnetic confinement …

Note: *B* does not depend on time, but a *particle* sees it varying 'in time'.

19.9.2021 21

… and invariance of *μ*

$$
\Rightarrow \frac{d}{dt} \left(\frac{1}{2} m v_{\parallel}^2 + \mu B \right) = B \frac{d \mu}{dt}
$$

Recall the definition: $\mu \equiv \frac{1}{2}$ 2 mv_{\perp}^2 \boldsymbol{B} $\Rightarrow \frac{1}{2}$ $\frac{1}{2}mv_{\perp}^2 = \mu B$ $\rightarrow E_{tot} = \frac{1}{2}$ $\frac{1}{2}mv_{\parallel}^2 + \mu B$ Total energy is conserved: $\frac{dE_{tot}}{dt}$ dt $= 0$ $\rightarrow \frac{d\mu}{dt}$ dt = 0 *The magnetic moment is an (adiabatic) invariant !!!*

19.9.2021 22

$$
\mu \equiv \frac{1}{2} \frac{m v_{\perp}^2}{B} = \text{constant}
$$

So what happens if the particle moves to a region with increasing B ?

- Perpendicular energy must increase …
- Total energy conserved $\rightarrow v_{\parallel}$ must decrease
- if B_{max} high enough \rightarrow Larmor motion eats up all $v_{\parallel} \rightarrow$ particle stops
- Now $\mathbf{F}_{\parallel} = -\mu \nabla_{\parallel} B$ kicks in \rightarrow particle gets reflected
- particle gets trapped in the mirror = particle is *confined*!

This was the idea behind the magnetic bottle.

Magnetic bottle is not plasma-tight…

But we do not get fusion electrons out of our electrical outlets. Why? There was an 'if' above: **if** B_{max} high enough ... What is 'high enough'?

- Let $v_{\parallel,0}$ & $v_{\perp,0}$ correspond to the mid-bottle, i.e., where $B = B_{min}$
- At the (potential) turning point, $B = B_{max}$: $v_{\parallel} = 0$ & $v_{\perp} = v_{\perp}'$

•
$$
\mu
$$
 = constant $\Rightarrow \frac{v_{\perp,0}^2}{B_{min}} = \frac{v_{\perp}^{\prime 2}}{B_{max}}$

- \bullet Energy is conserved: $v_{\perp,0}^2 + v_{\parallel,0}^2 = v_\perp^{\prime 2}$
- → Particle confined only if $v_{\parallel,0}$ is low enough (HW): $\frac{v_{\parallel,0}^2}{v_0^2}$ v_0^2 $\frac{1}{2}$ < 1 – B_{min}/B_{max}

The concept of a loss cone

- It is common to denote $\frac{v_{\parallel}^2}{v_{\parallel}^2}$ $\frac{\nu_{\parallel}}{v^2}$ ≡ ξ^2 , called the *pitch* of a particle
- Correspondingly, $\theta \equiv \cos^{-1} \xi$ is the *pitch angle*.
- The value of ξ in the weak-field region defines the *loss cone*: $\xi_0^2 > 1 - B_{min}/B_{max}$

It is clear that for $B_{max} < \infty$, the magnetic bottle leaks and not all the particles are confined. \odot

Things to keep in mind …

- Many interesting plasmas have their mirrors and loss cones …
- In a mirror field, particles with 'small' ξ bounce between the mirror points w/ *bounce frequency* ω_h
- Even though in a *uniform* magnetic field particles are stuck with their field line, with additional fields and/or uniformities, the particles will start *drifting* from their mother-fieldline
- More drifts to come in the second period...;-)

Adiabatic invariants

Aalto University School of Science

Let's take things a little further …

What is all the fuss about the magnetic moment? Is it just a fluke of the universe? Or is there something deep behind its invariance…?

Yes, there is something very fundamental. And it is not limited just to the magnetic moment…

The idea and use of (adiabatic) invariants

Recall basic classical mechanics:

- periodic motion \rightarrow coordinate q and momentum p that 'oscillate'
	- \rightarrow the action integral $\oint p \, dq =$ constant of motion (CoM)

Introduce a *slow* change in the system.

- *Slow = compared to the periodic motion, so that* ∮ *can be taken over unperturbed orbit*
- **→ CoM becomes an** *adiabatic invariant*

In plasma physics, three interesting invariants appear…

The 1st adiabatic invariant

In a magnetic field, the periodic motion always present is the *gyration* around the field line

$$
\blacktriangleright \oint p \, dq = \oint m v_{\perp} r_L d\theta = 2\pi r_L m v_{\perp} = 2\pi \frac{m v_{\perp}^2}{\Omega} = 4\pi \frac{m}{q} \mu
$$

→ Our old friend, the *magnetic moment*, is the related invariant! ©

Examples of the usefulness of

 \ldots actually an example of the usefulness of *breaking* μ =const... Magnetic pumping (= adiabatic compression)

- Vary B sinusoidally
- → mirror points move back-n-forth in z
- Due to μ =const no net heating \odot
- Include collisions

 \rightarrow during compression phase, collisions can transfer some v_1 into v_{\parallel} which does not care about the expansion phase

Examples of the usefulness of

 \ldots again an example of the usefulness of *breaking* μ =const... Cyclotron heating

- Apply an EM field $\omega = \Omega$
- \rightarrow E-field rotating ω ω = Ω
- \rightarrow some particles gyrate in phase with \bm{E} and get accelerated
- $\omega \ll \Omega$ violated
- $\rightarrow \mu \neq const$
- \rightarrow net energy increase !

The 2nd adiabatic invariant

We have discovered also another periodic motion:

Magnetic mirror

- \rightarrow particle with 'small' v_{II} gets trapped and bounces between mirror points at ω_h
- \rightarrow periodic motion!
- \rightarrow ∮ *p* $dq = \oint mv_{\parallel} ds$, where $ds =$ path length along a field line

The related CoM, the *longitudinal invariant I*, can be calculated as an integral between mirror points: $J = \int_a^b v_{\parallel} ds$.

Lengthy proof \rightarrow skipped here, but note:

- non-uniform B field \rightarrow GC drifts across field lines \rightarrow not exactly periodic
- **→** *adiabatic* invariant !

Application of (non-)invariance of *J* **…**

Again take a mirror system. Now apply $I(t) = I_0 \sin \omega t$ W/ $\omega \approx \omega_h$

 \rightarrow mirrors approach/withdraw from each other

→ particles with right bounce frequency always see an approaching mirror \rightarrow will gain *parallel* energy (shorter path length) Net gain possible because $\omega \ll \omega_h$ violated

→ transit-time magnetic pumping

The third adiabatic invariant

Via example:Earth's magnetic field:

- Gyration around a field line $\rightarrow \mu$
- Bounce motion between (polar) mirrors *J*

Grad-B drift \rightarrow particles(= GC's) drift around the Earth \rightarrow yet another periodic motion!

→ constant of motion obtained as an integral of the *drift* velocity along the $2\pi R_{path}$

- \rightarrow ... do the math ...
- \rightarrow total magnetic flux enclosed by the drift surface = const.

