
Lecture 2:
Plasma particles with E and B fields



Today’s Menu

• Magnetized plasma & Larmor radius
• Plasma’s diamagnetism
• Charged particle in a multitude of EM fields: drift motion

• ExB drift, gradient drift, (later: curvature drift, polarization drift, …)

• Concept of a guiding center
• Magnetic moment
• Magnetic mirror & Loss cone
• Adiabatic invariants 1, 2 ,3 and their usefulness
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Plasmas of interest
Not only are the plasmas of our interest (space & fusion) weakly coupled,
they are also magnetized … Why?
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Earth has its own magnetic field
that, in the first approximation, can
be considered a dipole field.

In fusion energy research, the
VERY hot plasma is kept away from
the vessel walls by a magnetic field.

B ~ several TB ~ tens of μT



Charged particles in magnetic field
Consider a charged particle (𝑚, 𝑞) in a uniform magnetic field, 𝑩 = 𝐵0𝒛ො.

Lorentz force: 𝑚 𝑑𝒗
𝑑𝑡

= 𝑞𝒗 × 𝑩

𝑚
𝑑𝑣𝑥

𝑑𝑡
= 𝑞𝑣𝑦𝐵0

𝑚
𝑑𝑣𝑦

𝑑𝑡
= −𝑞𝑣𝑥𝐵0

𝑚 𝑑𝑣𝑧
𝑑𝑡

= 0

Collect the constants into Ω ≡ 𝑞𝐵0/𝑚, Larmor/cyclotron frequency
HW 𝑣𝑥 = 𝑣⊥ sin Ω𝑡 with 𝑣𝑦 = 𝑣⊥ cos Ω𝑡 (or vice versa), 𝑣𝑧 = 𝑣∥
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Larmor motion …
Integrate in time (HW) 𝑥 = 𝑣⊥

Ω
sin Ω𝑡 & y = − 𝑣⊥

Ω
cos Ω𝑡

 charged particles are gyrating around the magnetic field line on a
circle with the radius defined by their perpendicular velocity and magnetic
field strength:

Larmor radius: 𝑟𝐿 = 𝑚𝑣⊥
𝑞𝐵

Notice right away (effects one-by-one):
• Strong field stick close to field line
• Big charge number stick close to field line
• Large perpendicular velocity large gyro radius
• Large mass  large excursions from the field line
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… and diamagnetism
Particles in plasma thus carry out circular motion around field lines.

A charged particle on a circular path forms a current ring …
Ampere’s law

𝛻 × 𝑩 = 𝜇0𝒋 … recall your course in EM

 additional magnetic field opposite to the background field

 A plasma is diamagnetic (… except in some special cases…), i.e., tends to
reduce the imposed magnetic field
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Concept of magnetized plasma
A plasma is considered magnetized if the Larmor radius is much much
smaller than the scale length L over which the magnetic field changes
appreciably.

𝑟𝐿 ≪ 𝐿

Note: not exactly uniform B fields…
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How about numbers?

Let’s take the physical systems from the 1st problem in 1st exercise:
• Fusion experiment, 𝐵 ∼ 5 T: Ω𝑒 ≈ 𝑥𝑥𝑥, 𝑟𝐿 ≈ 𝑥𝑥𝑥, 𝐿 ≈ 10 m
• Ionosphere, 𝐵 ∼ 50 000 nT: Ω𝑒 ≈ 𝑥𝑥𝑥, 𝑟𝐿 ≈ 𝑥𝑥𝑥, 𝐿 ≈ 100 km
• Solar wind, 𝐵 ∼ 5 nT: Ω𝑒 ≈ 𝑥𝑥𝑥, 𝑟𝐿 ≈ 𝑥𝑥𝑥, 𝐿 ≈ 108 km
• Sun , 𝐵 ∼ 0 ? !: Ω𝑒 ≈ 𝑥𝑥𝑥, 𝑟𝐿 ≈ 𝑥𝑥𝑥, 𝐿 ≈ 106 km
• Neutron star , 𝐵 ∼ 108 T: Ω𝑒 ≈ 𝑥𝑥𝑥, 𝑟𝐿 ≈ 𝑥𝑥𝑥, 𝐿 ≈ 10 km

(HW?: are these plasmas magnetized?)
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Charged particle motion in simple or
’simplish’  fields
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Add a uniform electric field, E = E0
𝑬 = 𝐸0 𝒛ො  simply acceleration in the direction of B
Take 𝑬 perpendicular to B, e.g., 𝑬 = 𝐸0𝒙ෝ
Think what happens now during the gyration period …

Can this be true?
Particle seems to move in direction perpendicular to both E and B fields!!!
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Do the math …
Equations of motion: 𝑑𝑣𝑥

𝑑𝑡
= Ω𝑣𝑦 + 𝑞𝐸0

𝑚
𝑑𝑣𝑦

𝑑𝑡
= −Ω𝑣𝑥

HW …
 𝑣𝑥 = 𝑣⊥ sin Ω𝑡

𝑣𝑦 = 𝑣⊥ cos Ω𝑡 + 𝐸0
𝐵0

Indeed, the particle drifts perpendicular to both fields!
Useful concept: the guiding center, i.e., the ’center of gyro motion’, drifts.
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The 𝑬 × 𝑩 drift
This guiding-center drift is called the 𝑬 × 𝑩 drift and it has a very
important role especially in fusion plasma physics.

General (vector) form: 𝒗𝐸𝑥𝐵 = 𝑬×𝑩
𝐵2

Things to notice:
• The drift does not depend on the particle – everybody drifts in the same

direction with the same velocity!
• This drift is not really specific to just electric field. Any external force, E

F/q, would cause such a drift – but this time depending on the charge!
• e.g., gravitational force
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Charged particle motion in non-
uniform magnetic field
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Part I: 𝛁𝐵 ⊥ 𝑩 = 𝐵0 𝑧̂
Choose the axes so that 𝛁𝐵 ∥ 𝑦ො
What happens now during one gyration period …

The particle is moving (= drifting) in direction perpendicular to both the 𝑩
field and its gradient!!!
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Do the math …

Taylor expand the magnetic field remembering that 𝑟𝐿 ≪ 𝐿

𝐵𝑧 = 𝐵𝑜 + 𝑦 𝜕𝐵𝑧
𝜕𝑦

+ …

𝐹𝑦 = −𝑞𝑣𝑥𝐵𝑧 𝑦 ≈ −𝑞𝑣⊥(sin Ω𝑡) 𝐵𝑜 + 𝑟𝐿(sin Ω𝑡)
𝜕𝐵𝑧

𝜕𝑦
where unperturbed orbit was used to evaluate the force. Why???

Mg’ed plasma Ω the shortest time scale average over gyro period

< sin Ω𝑡 > = 0, < (sin Ω𝑡)2> = 1
2

 < 𝐹𝑦 > =  ± 1
2

𝑞𝑣⊥𝑟𝐿
𝜕𝐵𝑧
𝜕𝑦
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The gradient drift

So there is an effective net force on the particle
obtain GC drift from the generalized 𝑬 × 𝑩 drift:

𝑣𝐺𝐶 =
1
𝑞

𝑭 × 𝑩
𝐵2 =

1
𝑞

𝐹𝑦

𝐵0
𝑥ො = ±

1
2𝐵0

𝑣⊥𝑟𝐿
𝜕𝐵𝑧

𝜕𝑦
 The gradient drift (𝛻𝐵-drift) in general vector form

𝒗𝛻𝐵 = ± 1
2

𝑣⊥𝑟𝐿
𝑩×𝛻𝐵

𝐵2

This drift does depend on the charge, as indicated by the ± sign
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Part II:B ∥ B = B0 z

For axial B-field to have parallel gradient means that the field must have
also a radial component. It can be obtained from 𝛻 ȉ 𝑩 = 0:

Cylindrical symmetry cylindrical coordinates: 1
𝑟

𝜕
𝜕𝑟

𝑟𝐵𝑟 + 𝜕𝐵𝑧
𝜕𝑧

= 0

Assume slowly varying magnetic field

𝑟𝐵𝑟 = − ∫ 𝑟 𝜕𝐵𝑧
𝜕𝑧

𝑑𝑟 ≈ − 1
2

𝑟2 𝜕𝐵𝑧
𝜕𝑧

𝑟
0 r=0  𝐵𝑟 ≈ − 1

2
𝑟 𝜕𝐵𝑧

𝜕𝑧 r=0

Non-uniformity in 𝑟 gradient drift in poloidal direction. No problem. 
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Full Lorentz force in cylindrical coordinates

𝐹𝑟 = 𝑞𝑣𝜃𝐵𝑧
𝐹𝜃 = 𝑞 𝑣𝑧𝐵𝑟 − 𝑣𝑟𝐵𝑧

𝐹𝑧 = −𝑞𝑣𝜃𝐵𝑟

• The 1st term in 𝐹𝜃 causes a radial drift that forces the particle to follow
the bending field lines

• The new physics is brought about by 𝐹𝑧.
• For simplicity, study a particle ”on” the axis, rGC = 0:

𝐹𝑧  = −𝑞𝑣⊥
1
2

𝑟𝐿
𝜕𝐵𝑧
𝜕𝑧 r=0
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Gyro motion
around the fieldline



Magnetic force along the field …

𝑟𝐿 = 𝑚𝑣⊥/𝑞𝐵  𝐹𝑧  = − 1
2

𝑚𝑣⊥
2

𝐵
𝜕𝐵𝑧
𝜕𝑧

= −𝜇 𝜕𝐵𝑧
𝜕𝑧

where 𝜇 ≡ 1
2

𝑚𝑣⊥
2

𝐵
is the so-called magnetic moment of the particle.

General (vector) form: 𝑭∥ = −𝜇𝛻∥𝐵
Note:
• μ can be understood as the magnetic moment due to the current loop

created by the gyrating particle (HW)
• The force causes a braking action when particle moves towards higher

field …
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Now we have a bunch of drifts…
What next?
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Magnetic mirrors …
”Magnetic bottle”: first attempt to magnetic confinement …

Linear device 𝑩 ≈ 𝐵 z 𝑧 …̂

𝑚
𝑑𝑣∥

𝑑𝑡
= −𝜇

𝜕𝐵
𝜕𝑠

Multiply by 𝑣∥ = 𝑑𝑠
𝑑𝑡


𝑚
2

𝑑
𝑑𝑡

𝑣∥
2 = −𝜇 𝜕𝐵

𝜕𝑠
𝜕𝑠
𝜕𝑡

= −𝜇 𝑑𝐵
𝑑𝑡

Note: 𝐵 does not depend on time, but a particle sees it varying ’in time’.
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s = distance
along a field line 𝑩𝒎𝒂𝒙

𝑩𝒎𝒊𝒏



… and invariance of μ


𝑑
𝑑𝑡

1
2

𝑚𝑣∥
2 + 𝜇𝐵 = 𝐵 𝑑𝜇

𝑑𝑡

Recall the definition: 𝜇 ≡ 1
2

𝑚𝑣⊥
2

𝐵


1
2

𝑚𝑣⊥
2 = 𝜇𝐵

 𝐸𝑡𝑜𝑡 = 1
2

𝑚𝑣∥
2 + 𝜇𝐵

Total energy is conserved: 𝑑𝐸𝑡𝑜𝑡
𝑑𝑡

= 0


𝑑𝜇
𝑑𝑡

= 0 The magnetic moment is an (adiabatic) invariant !!!
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In the house of mirrors …

𝜇 ≡ 1
2

𝑚𝑣⊥
2

𝐵
= constant

So what happens if the particle moves to a region with increasing 𝐵?
• Perpendicular energy must increase …
• Total energy conserved 𝑣∥ must decrease
• if 𝐵𝑚𝑎𝑥 high enough Larmor motion eats up all 𝑣∥  particle stops
• Now 𝑭∥ = −𝜇𝛻∥𝐵 kicks in particle gets reflected
 particle gets trapped in the mirror = particle is confined!

This was the idea behind the magnetic bottle.
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Magnetic bottle is not plasma-tight…
But we do not get fusion electrons out of our electrical outlets. Why?
There was an ’if’ above: if 𝐵𝑚𝑎𝑥 high enough … What is ’high enough’?
• Let 𝑣∥,0 & 𝑣⊥,0 correspond to the mid-bottle, i.e., where 𝐵 = 𝐵𝑚𝑖𝑛

• At the (potential) turning point, 𝐵 = 𝐵𝑚𝑎𝑥: 𝑣∥ = 0 & 𝑣⊥ = 𝑣⊥
′

• 𝜇 = constant 
𝑣⊥,0

2

𝐵𝑚𝑖𝑛
= 𝑣⊥

′2

𝐵𝑚𝑎𝑥

• Energy is conserved: 𝑣⊥,0
2 +𝑣∥,0

2 = 𝑣⊥
′2

 Particle confined only if 𝑣∥,0 is low enough (HW):
𝑣∥,0

2

𝑣0
2 < 1 − 𝐵𝑚𝑖𝑛/𝐵𝑚𝑎𝑥
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The concept of a loss cone

• It is common to denote 𝑣∥
2

𝑣2 ≡ 𝜉2, called the
pitch of a particle

• Correspondingly, 𝜃 ≡ co𝑠−1 𝜉 is the pitch
angle.

• The value of 𝜉 in the weak-field region
defines the loss cone: 𝜉0

2 > 1 − 𝐵𝑚𝑖𝑛/𝐵𝑚𝑎𝑥

It is clear that for 𝐵𝑚𝑎𝑥 < ∞, the magnetic bottle
leaks and not all the particles are confined. 
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Things to keep in mind …

• Many interesting plasmas have their mirrors and
loss cones …

• In a mirror field, particles with ’small’ 𝜉 bounce
between the mirror points w/ bounce frequency 𝜔𝑏

• Even though in a uniform magnetic field particles
are stuck with their field line, with additional fields
and/or uniformities, the particles will start drifting
from their mother-fieldline

• More drifts to come in the second period… ;-)
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Adiabatic invariants
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Let’s take things a little further …

What is all the fuss about the magnetic moment?
Is it just a fluke of the universe?
Or is there something deep behind its invariance…?

Yes, there is something very fundamental.
And it is not limited just to the magnetic moment…
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The idea and use of (adiabatic) invariants

Recall basic classical mechanics:
• periodic motion coordinate 𝑞 and momentum 𝑝 that ’oscillate’

 the action integral ∮ 𝑝 𝑑𝑞 = constant of motion (CoM)
Introduce a slow change in the system.

- Slow = compared to the periodic motion, so that ∮ 𝑝 𝑑𝑞 can be taken over unperturbed orbit

CoM becomes an adiabatic invariant
In plasma physics, three interesting invariants appear…
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The 1st adiabatic invariant

In a magnetic field, the periodic motion always present is the gyration
around the field line

∮ 𝑝 𝑑𝑞 = ∮ 𝑚𝑣⊥𝑟𝐿𝑑𝜃 = 2𝜋𝑟𝐿𝑚𝑣⊥ = 2𝜋 𝑚𝑣⊥
2

Ω
= 4𝜋 𝑚

𝑞
𝜇

Our old friend, the magnetic moment, is the related invariant! 



Examples of the usefulness of 𝜇
… actually an example of the usefulness of breaking 𝜇=const…
Magnetic pumping (= adiabatic compression)
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• Vary B sinusoidally
 mirror points move back-n-forth in z
• Due to 𝜇=const no net heating 
• Include collisions
 during compression phase, collisions
can transfer some 𝑣⊥ into 𝑣∥ which does
not care about the expansion phase
 net heating! 𝐼(𝑡)  =  𝐼0 sin 𝜔𝑡 

z



Examples of the usefulness of 𝜇
… again an example of the usefulness of breaking 𝜇=const…
Cyclotron heating
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• Apply an EM field @𝜔 = Ω
 𝑬 -field rotating @ 𝜔 = Ω
 some particles gyrate in phase with 𝑬 and get
accelerated
• 𝜔 ≪ Ω violated
 𝜇 ≠const
 net energy increase !



The 2nd adiabatic invariant
We have discovered also another periodic motion:
Magnetic mirror
 particle with ’small’ v∥ gets trapped and bounces between mirror points at 𝜔𝑏

 periodic motion!

 ∮ 𝑝 𝑑𝑞 = ∮ 𝑚𝑣∥𝑑𝑠, where 𝑑𝑠 = path length along a field line

The related CoM, the longitudinal invariant 𝐽, can be calculated as an
integral between mirror points: 𝐽 = ∫ 𝑣∥𝑑𝑠 𝑏

𝑎 .
Lengthy proof skipped here, but note:

- non-uniform B field GC drifts across field lines not exactly periodic
 adiabatic invariant !



Application of (non-)invariance of J …

Again take a mirror system.
Now apply 𝐼(𝑡)  =  𝐼0 sin 𝜔𝑡 w/ 𝜔 ≈ 𝜔𝑏

 mirrors approach/withdraw from each other
 particles with right bounce frequency always see an approaching
mirror will gain parallel energy (shorter path length)
Net gain possible because 𝜔 ≪ 𝜔𝑏 violated
 transit-time magnetic pumping
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The third adiabatic invariant
Via example:Earth’s magnetic field:
• Gyration around a field line 𝜇
• Bounce motion between (polar) mirrors J
• Grad-B drift particles(= GC’s) drift around the Earth yet another

periodic motion!
 constant of motion obtained as an integral of the drift velocity along
the 2𝜋 𝑅𝑝𝑎𝑡ℎ

… do the math …
 total magnetic flux enclosed by the drift surface = const.
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