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a b s t r a c t

Safety analysis in gas process facilities is necessary to prevent unwanted events that may cause

catastrophic accidents. Accident scenario analysis with probability updating is the key to dynamic

safety analysis. Although conventional failure assessment techniques such as fault tree (FT) have been

used effectively for this purpose, they suffer severe limitations of static structure and uncertainty

handling, which are of great significance in process safety analysis. Bayesian network (BN) is an

alternative technique with ample potential for application in safety analysis. BNs have a strong

similarity to FTs in many respects; however, the distinct advantages making them more suitable than

FTs are their ability in explicitly representing the dependencies of events, updating probabilities, and

coping with uncertainties. The objective of this paper is to demonstrate the application of BNs in safety

analysis of process systems. The first part of the paper shows those modeling aspects that are common

between FT and BN, giving preference to BN due to its ability to update probabilities. The second part is

devoted to various modeling features of BN, helping to incorporate multi-state variables, dependent

failures, functional uncertainty, and expert opinion which are frequently encountered in safety analysis,

but cannot be considered by FT. The paper concludes that BN is a superior technique in safety analysis

because of its flexible structure, allowing it to fit a wide variety of accident scenarios.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Safety analysis is very important in gas process facilities as
they deal with a large amount of flammable chemicals; also,
process areas are congested with complex piping, high-pressure
compressors, and separators of which malfunctions and mishaps
may lead to catastrophic accidents [1,2].

There have been many fatal explosions and fires imposing
major capital loss and considerable death toll in the past two
decades. On 23 March 2005, the BP refinery explosion in Texas
City caused 15 deaths and more than 170 injuries [3]. According
to the final report issued by BP [4], a lack of process safety
measures and insufficient risk reduction measures were entirely
to blame for the accident. On 7 February 2010, the Kleen Energy
power plant exploded in Middletown, Connecticut, U.S., killing
6 and injuring at least 12. The explosion was one of the worst
industrial disasters in the U.S. in recent years [5]. Most recently,
on 20 April 2010, explosion and fire on Transocean Ltd’s drilling
rig killed 11 and injured 17 in the Gulf of Mexico. The failure of a
blowout preventer has been determined as the primary cause of
the accident [6]. It is important to broaden the risk analysis scope
ll rights reserved.
by considering accident scenario and real-time safety analysis in
order to predict and continuously update the likelihood of
catastrophic accidents and to take actions to prevent them.

Forecasting likely accident scenarios is the most important
step in safety analysis. Khan [7] proposed a ‘‘maximum credible

accident scenario’’ approach that short-lists the important scenar-
ios based on both their consequences and the likelihood of
accident occurrence. Delvosalle et al. [8] used two methodologies:
MIMAH for the identification of major accident hazards, in which
no safety system was considered, and MIRAS for the identification
of reference accident scenarios, in which all the actual safety
functions and barriers were included in the analysis. The next
step in safety analysis is to quantify the occurrence probability of
the selected accident scenarios. For this, there are many techni-
ques available, among which fault tree (FT) is very popular.

Although having some limitations, FTs are extensively used in
the field of risk analysis of process systems [1,9,10] and fault
diagnosis [11–13]. Standard FTs are not suitable for analyzing
large systems, particularly if the system presents redundant
failures, common cause failures, or mutually exclusive primary
events. More importantly, events in a FT are assumed indepen-
dent, which is not usually a valid assumption [2,14,15].

In recent years, a Bayesian network (BN) methodology has
begun to be used in engineering applications. A BN is a graphical
inference technique used to express the causal relationships
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among variables. BNs are used either to predict the probability of
unknown variables or to update the probability of known vari-
ables given the certain state of other variables (evidence) through
the process of probability propagation or reasoning. The reason-
ing is based on Bayes’ theorem. Due to this ability, BNs have
provided a promising framework for system safety analysis and
risk management [16].

BNs are increasingly used in reliability assessment [2,16–18],
fault diagnosis [19,20], and updating the failure probability of
safety systems [21,22] have examined the parallels between BNs
and FTs and have shown the obvious superiority of BNs over FTs
in terms of modeling and analysis capabilities. Bobbio et al. [14]
showed that the limitations of FTs can be relaxed to a great extent
by relying on BNs. Other relevant works have been done by either
mapping static FTs to BNs [15,23,24] or mapping dynamic FTs into
the corresponding dynamic BNs [22,25,26].

Many authors have investigated different techniques in acci-
dent scenario analysis, very few of whom have used BNs in their
work. Sklet [27] qualitatively compared some commonly used
methods such as FT analysis, event tree analysis, and barrier
analysis for accident analysis. The comparison was made based on
criteria such as graphical representation and the ability to support
safety barriers. Nivolianitou et al. [28] used FT, event tree, and
Petri nets for a qualitative accident scenario analysis in an
ammonia storage plant, concluding that Petri nets are able to
incorporate the evidence through scenario analysis and thus are
more appropriate for dynamic accident analysis. Zheng and Liu
[29] made a comparison among some widely used methods for
accident forecasting. Although FT as a scenario analysis method
and BN were briefly discussed, the main focus in their research
was devoted to methods such as regression models, time-series
methods, and neural networks.

Most recently, Weber et al. [30] gave an exhaustive statistical
review of BN application in different areas such as risk and
maintenance analysis, in which BN was qualitatively compared
with other methods such as FTs, Markov chains, and Petri nets. The
present work is aimed at showing the parallels between FTs and
BNs in the specific area of accident modeling and process safety
analysis, which have not been studied thus far. The paper also
discusses the modeling potential offered by BNs, making them a
superior method compared to FTs for dynamic safety analysis.

A brief description of the fundamentals of FTs, BNs, and the
mapping algorithm are presented in Section 2. The comparison of
the two methods is done in Section 3, where a simple accident
scenario is modeled using both methods. Section 4 is devoted to
the application of BN to more complicated scenarios which
cannot be modeled using FTs. The conclusions and recommenda-
tions for future work are presented in Section 5.
2. Failure analysis techniques

Many approaches have been developed for accident analysis,
among which FT analysis is the most common. Recently BNs have
drawn much attention. In the subsequent subsections, both
approaches are described, and the mapping algorithm from FT
to BN is recapitulated.

2.1. Fault tree

FT is a deductive, structured methodology to determine the
potential causes of an undesired event, referred to as the top
event. The top event usually represents a major accident causing
safety hazards or economic loss [31]. While the top event is
placed at the top of the tree, the tree is constructed downwards,
dissecting the system for further detail until the primary events
leading to the top event are known. Primary events are consid-
ered binary (with two states) and statistically independent In an
FT, the relationships between events are represented by means of
gates, of which AND-gates and OR-gates are the most widely used.

Once completed, the FT can be analyzed both qualitatively and
quantitatively. In the qualitative evaluation, using Boolean algebra,
an expression is derived for the top event in terms of combinations
of primary events. In the quantitative part, the probability of the
top event is expressed in terms of the occurrence probability of the
primary events or in terms of the minimal cut-sets.

Small FTs can be evaluated manually; however, large and
complex FTs require the aid of computerized methods for evalua-
tion. Methods for FT analysis include the analytical method,
Monte Carlo simulation, and binary decision diagram. Due to
limitations in using the Monte Carlo simulation, an analytical
approach (e.g., minimal cut-sets determination) is more fre-
quently used for evaluation of a FT. To reduce the margin of error
due to inaccuracy and incompleteness of the data of the primary
events, some authors have recently used fuzzy set theory and
evidence theory in FT analysis [9,32–34].

2.2. Bayesian network

BNs are increasingly used for the construction of system
reliability models, risk management, and safety analysis based
on probabilistic and uncertain knowledge. Similar to FTs, BNs
consist of both qualitative and quantitative parts. BNs are directed
acyclic graphs, in which the nodes represent variables, arcs signify
direct causal relationships between the linked nodes, and the
conditional probability tables assigned to the nodes specify how
strongly the linked nodes influence each other [2].

BN takes advantage of the ‘‘d-separation’’ criterion (Jensen and
Nielsen, 2007) and the chain rule to perform quantitative analysis.
Based on d-separation criteria, all root nodes are conditionally
independent and the other nodes are conditionally dependent on
only their direct parents [14].

According to the conditional independence and the chain rule,
BNs represent the joint probability distribution P(U) of variables
U¼{A1,y,An} included in the network as

PðUÞ ¼
Yn

i ¼ 1

PðAi9PaðAiÞÞ ð1Þ

where PaðAiÞ are the parents of Ai in the BN, and P(U) reflects the
properties of the BN [35].

BNs’ main application in accident analysis is an inference
engine for updating the prior occurrence probability of events
given new information, called evidence E. The new information is
usually operational data including occurrence or non-occurrence
of the accident or primary events:

PðU9EÞ ¼
PðU,EÞ

PðEÞ
¼

PðU,EÞP
UPðU,EÞ

ð2Þ

Eq. (2) can be used for either probability prediction or prob-
ability updating. In predictive analysis, conditional probabilities
of the form P(accident9event) are calculated, indicating the occur-
rence probability of a particular accident given the occurrence or
non-occurrence of a certain primary event. On the other hand, in
updating analysis, those of the form P(event9accident) are eval-
uated, showing the occurrence probability of a particular event
given the occurrence of a certain accident [19].

2.3. Mapping fault trees to Bayesian networks

A mapping algorithm includes graphical and numerical tasks.
In graphical mapping, primary events, intermediate events,
and the top event of the FT are represented as root nodes,



Table 1
Different events related to an accident scenario in the feed control system and

their occurrence probabilities.

Number Component Symbol Probability

1 Pressure transmitter failure PT 0.1647

2 Pressure controller failure PC 0.2818

3 No signal received by pressure controller PC_signal OR-gate

4 Pressure relay failure PY 0.1538

5 No signal received by actuator Act_signal OR-gate
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intermediate nodes, and the leaf node in the corresponding BN,
respectively. The nodes of a BN are connected in the same way as
corresponding components in the FT. In numerical mapping, the
occurrence probabilities of the primary events are assigned to the
corresponding root nodes as prior probabilities. For each inter-
mediate node as well as leaf node, a conditional probability
table (CPT) is developed. The CPTs are developed according to
the type of gate [14,24]. Fig. 1 illustrates the simplified procedure
of mapping FTs into BNs.
6 Automatic valve mechanical failure A_valve 0.3403

7 Actuator mechanical failure Actuator 0.2015

8 Automatic valve improper control A_valve_ctrl OR-gate

9 Human failure in operating manual valve Hum_error 0.2696

10 Manual valve mechanical failure M_valve 0.1393

11 Manual valve improper control M_valve_ctrl OR-gate

12 Feed system improper control Feed_ctrl AND-gate
3. Safety analysis

3.1. Case study

The performance of a feeding control system transferring
propane from a propane evaporator to a scrubbing column is
selected to illustrate the methodology for the purpose of safety
analysis. To maintain a specified pressure inside the scrubbing
column, the feed pipeline is equipped with an automatic valve
operated by an actuator. Immediate and proper functioning of the
actuator depends on a pressure relay and signals that are received
from a pressure controller via a pressure transmitter. A manual
valve is also considered to avoid pressure increase in case of
malfunction of the automatic valve. All components are assumed
binary (Work/Fail). The occurrence frequency data of primary
events that would contribute to the occurrence of this accident
scenario is presented in Table 1, while intermediate events and
the top event have been identified by the type of gate leading to
these events.

3.2. Fault tree analysis

Considering the behavior of the components and the inter-
mediate events, the FT is constructed as shown in Fig. 2. Occur-
rence probabilities presented in Table 1 are then assigned to each
primary event. Considering the probabilities, the prior probability
of the top event is calculated as 0.2720.
Fig. 1. Mapping FT to BN.

Fig. 2. FT for the malfunction of feed system.
For comprehensive accident scenario analysis and effective
safety decision-making, it is necessary to determine the critical
primary events and also minimal cut-sets leading to the top event
occurrence [31]. To this end, the contribution of each event (e.g.,
Ci) is estimated by repeating the FT analysis while keeping that
particular event absent, i.e., P(Ci¼1)¼0. Subsequently, the con-
tribution of each event is transformed into an ‘‘improvement

index’’ [1] that signifies the percent contribution of that event in
leading to the top event (Table 2). The higher the index of an
event, the more vulnerable it is in leading to the top event. As
may be noticed in Table 2, events C9, C10, C6, and C2 have the
highest improvement indices (components are numbered



Table 2
Top event probability and improvement indices for FT and BN analysis.

Fault tree analysis Bayesian network analysis

Event not

occurring

Probability Improvement

index (%)

Probability Improvement

index (%)

0 0.2720 0.0 0.2720 0.0

C1 0.2525 5.2 0.2525 5.2

C2 0.2331 10.5 0.2331 10.5

C4 0.2540 4.8 0.2540 4.8

C6 0.2208 13.8 0.2208 13.8

C7 0.2470 6.7 0.2470 6.7

C9 0.1020 45.7 0.1020 45.7

C10 0.1975 20.0 0.1975 20.0
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according to Table 1). Therefore, in order to improve the safety of
the system these events are considered first.

The FT in Fig. 2 may be expressed as the union of 10 minimal
cut-sets:

TE¼M1 [M2 [ . . . [M10 ð3Þ

where Mi represents the ith minimal cut-set. Each minimal cut-
set consists of the intersection of the minimal number of primary
events required to cause the top event:

M¼ Ci \ Cj

i¼ 1,2,4,6,7

j¼ 9,10

(
ð4Þ

Knowing the minimal cut-sets, the following considerations
would be of great help [31]:
Fig. 3. BN structure based on the FT in Fig. 2.

�
 Rank of each minimal cut-set defined by the number of its

primary events. This would help to identify the shortest path
in accident causation and consequently help to devise mea-
sures against such an occurrence.

�
 Importance of each minimal cut-set. This would help to

identify the most probable minimal cut-set in the accident
causation sequence. The cut-set importance for the ith mini-
mal cut-set is defined as

IMi ¼
PðMiÞ

PðTEÞ
ð5Þ

If each event Ci has the probability of occurrence P(Ci), the
probability of the cut-set is defined as
PðMÞ ¼
Y
iAM

PðCiÞ ð6Þ

Eq. (6) implies that the primary events included in the
minimal cut-set are assumed independent. It is important to note
that P(Ci) refers to the prior occurrence probability of each event;
therefore, Eq. (6) yields a prior importance. According to the
above discussion, all minimal cut-sets of the FT in Fig. 2 are
twines, that is, they all consist of two events; therefore, all of
them are of the same ranking. Also, the most important minimal
cut-set is M¼C6\C9 with IM¼0.3373, showing that mechanical
failure of automatic valve (A_valve) and failure of the operator to
close the manual valves (Hum_error) are the likely explanations
for system failure.
3.3. Bayesian network analysis

Using the algorithm described in Section 2.3, the Bayesian
network is constructed for the accident scenario in the feed
control system (Fig. 3). Once developed, BN is analyzed using
HUGIN 7.3 (http://www.hugin.com) [38].
The prior probability of the leaf node in the BN is calculated to
be P(Feed_ctrl)¼0.2720, which is the same as that of the FT. The
improvement indices are estimated for each event (Table 2) by
instantiating that particular event (i.e., Ci¼0) and subsequently
calculating the conditional probability P(Feed_ctrl9Ci¼0). As
shown in Table 2, the events C9, C10, C6, and C2 are again identified
to contribute most to the leaf node (Feed_ctrl).

It is worth noting that during predictive analysis to calculate
the scenario occurrence probability (deductive reasoning), the BN
provides similar results to those of the traditional FT as long as
primary events are independent of each other. However, one of
the unique characteristics of BN for dynamic accident scenario
analysis is its ability for abductive reasoning, aimed at updating
the occurrence probability of the primary events given the
occurrence of the accident precursors. (Kjaerulff and Madsen,
2007). Throughout abductive reasoning, two inherent features of
BNs are revealed, i.e., probability updating and uncertainty redu-
cing, both of which are of great importance in dynamic safety
analysis.

Although some authors have combined FTs with other meth-
ods to accommodate the two aforementioned features, these
methods are to be implemented under specific conditions, making
their application limited in accident scenario and safety analysis.
For instance, Shalev and Tiran [36] coupled FT analysis with
condition monitoring to obtain an up-to-date FT. Also, Ferdous
et al. (2009) and Markowski et al. [33] have equipped FTs with
fuzzy theory and evidence theory to cope with parameter uncer-
tainty due to using data obtained from similar accidents or expert
knowledge.

On the other hand, BNs are naturally able to reduce parameter
uncertainty through probability updating. In BN analysis, the
posterior probabilities reflect the characteristics of the accident
studied more specifically than prior probabilities and hence are

www.hugin.com


N. Khakzad et al. / Reliability Engineering and System Safety 96 (2011) 925–932 929
less uncertain. This is because posteriors, unlike priors, are
probabilities that have been updated using the accident’s latest
information. BN can repetitively substitute the posteriors for
priors in the accident re-analysis when a new set of accident-
related information is observed. This substitution not only con-
tinuously reduces the data uncertainty, but it also provides the
accident scenario with real-time and up-to-date analysis.
3.4. Probability updating

Beyond the usual measures available in FTs, BN is able to
perform probability updating analysis, given new observations
[14]. In this regard, the computation of the posterior marginal
probabilities of root nodes given the scenario occurrence is the
most popular (i.e., abductive reasoning). To this end, the posterior
probability of each root node Ci is calculated using P(Ci9Feed_ctrl),
indicating the probability of Ci conditioned to the Feed_ctrl

malfunction (column 4 of Table 3).
It may be observed from Table 3 that the occurrence prob-

ability of the events C9, C10, and C11 had the highest increase. Also,
event severity ranking based on posteriors is different from that
based on priors. Based on the event posterior probabilities, the
most important minimal cut-set is defined as M¼C6\C9 (the same
as in the FT) with the posterior importance index as IM¼0.3372.
It is to be noted that in the calculation of the posterior importance
index, P(Feed_ctrl)¼1 is considered.

The posterior joint probability of all the primary events given
the accident occurrence is much more helpful than the most
important minimal cut-set if a precise and comprehensive safety
analysis is desired. This is because the latter does not provide any
information about the occurrence or non-occurrence of the
primary events not included in it [14].

To determine the most probable state of all the variables given
the accident occurrence, the most probable configuration, the BN
searches over the state space of each variable to identify weak
links. Using the most probable explanation concept, the most
probable state given the accident occurrence is the one corre-
sponding to the occurrence of the primary events C6, C9, and C10,
and the non-occurrence of the other primary events:

PðC1,C2,C4,C6,C7,C9,C109Feed_ctrlÞ ¼ 0:1179

It is important to note that unlike the posterior minimal cut-
set, which identifies C6 and C9 as the most likely causes for system
failure, the most probable explanation provides more information
by adding C10 to the foregoing set. Also, it implies that the other
non-mentioned events do not contribute to system failure. In this
regard, using BN in safety analysis helps to identify critical events
Table 3
Comparison between prior and posterior probabilities in different modeling steps.

Number Component First modeling Alarm m

Prior Posterior Prior

1 PT 0.1647 0.2248 0.1647

2 PC 0.2818 0.3847 0.2818

3 PC_signal 0.4001 0.5461 0.4001

4 PY 0.1538 0.2099 0.1538

5 Act_signal 0.4924 0.6721 0.4924

6 A_valve 0.3403 0.4645 0.3403

7 Actuator 0.2015 0.2751 0.2015

8 A_valve_ctrl 0.7326 1.0000 0.7326

9 Hum_error 0.2696 0.7260 0.2696

10 M_valve 0.1393 0.3751 0.1393

11 M_valve_ctrl 0.3713 1.0000 0.3713

12 Feed_ctrl 0.2720 1.0000 0.1146

13 Alarm 0.2614, 0
and allocate preventative safety barriers not only to the primary
events directly leading to the top event but also to weak links
(combination of non-critical events).
4. Modeling techniques

Modeling aspects of BN such as handling multi-state variables,
sequentially dependent failures, and uncertainty handling are
discussed in this section to demonstrate that BN has a more
flexible structure than FT, and is also a preferred option over FT
for modeling some accident scenarios.

4.1. Multi-state variables and dependent failures

To make the aforementioned accident scenario more realistic,
it is assumed that the manual valve is closed by the operator only
if an alarm system sounds due to the automatic valve failure (i.e.,
A_valve_ctrl occurrence). As before, all components are assumed
binary, except the alarm system which is considered ternary, i.e.,
having three states: No-sound (alarm fails to sound), Wrong-sound

(alarm sounds although automatic valve works), and Right-sound

(alarm sounds when automatic valve fails). It has also been
assumed that human failure probabilities to close the manual
valve differ for wrong and right alarm sounds.

Based on the causal relationships among the aforementioned
components and their failure probabilities, a BN was developed to
predict the probability of improper operation of the control
system (Fig. 4). The occurrence probability of the BN components
are the same as before, except Alarm and Hum_error which are
assigned CPTs. For ease of comparison in subsequent calculations,
CPT values have been identified such that the prior probability of
Hum_error would be 0.2696 (as before).

When constructed, the BN was modeled using the HUGIN
7.3 and the failure probability of Feed_ctrl; the prior probabilities
of the intermediate nodes were also calculated (column 5 of
Table 3). It should be noted that the two numbers for Alarm are
for the No-sound and Wrong-sound states, respectively; the prior
probability of Right-sound is readily calculated by subtracting the
summation of No-sound and Wrong-sound priors from unity.

To determine the most critical primary events, abductive
reasoning was performed given the accident occurrence (i.e., the
malfunction of the feeding control system), yielding updated
probabilities (column 6 of Table 3). Also, the most probable
configuration of the primary events leading to the accident was
specified to be the occurrence of the components C6 and C10, and
the non-occurrence of the rest, with the probability of
PðC1,C2,C4,C6,C7,C9,C10,C139Feed_ctrlÞ ¼ 0:1643:
odeling Uncertainty modeling

Posterior Prior Posterior

0.2248 0.1647 0.2186

0.3847 0.2818 0.3687

0.5461 0.3117 0.4496

0.2099 0.1538 0.2219

0.6721 0.4175 0.6024

0.4645 0.3403 0.4909

0.2751 0.2015 0.2907

1.0000 0.6932 1.0000

0.1272 0.3112 0.1907

0.8905 0.1393 0.8359

1.0000 0.4017 1.0000

1.0000 0.1155 1.0000

.0134 0.0639, 0.0000 0.3031, 0.0190 0.1302, 0.0000



Fig. 4. BN structure for feed control system with alarm system.
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Although adding an alarm system to the accident scenario did
not change the prior probability of human failure, it significantly
decreased its posterior probability, excluding it from the most
probable configuration. According to the new most probable
explanation, mechanical failure of the automatic valve is to blame
for A_valve_ctrl occurrence, triggering the alarm system (Alarm¼

Right-sound). Despite alarm system proper functioning, the man-
ual valve cannot be closed because of mechanical failure, not the
operator failure. So mechanical failure of the automatic and
manual valve, i.e., A_valve and M_valve, eventually caused the
feed system to not work properly. If prior probabilities of accident
occurrence (priors of Feed_ctrl) are compared before and after
Alarm is added to the system, it can be seen that using the alarm
system helps the operator to intervene more effectively in
accident occurrence prevention. This decreases the probability
of accident occurrence from 0.2720 to 0.1179.

4.2. Functional uncertainty and expert opinion

While BN reduces the uncertainty of prior beliefs through
probability updating, there are other modeling techniques that
help to capture some types of uncertainty [37]. Among these,
functional uncertainty and uncertainty due to expert opinion are
of significant importance in accident analysis.

Functional uncertainty is due to the lack of certitude in accurate
determination of a causal function among nodes. However, to
handle this kind of uncertainty, alternative functions and their
relative frequencies must be known. Two common functions used
to link a child to its parents in BNs are intersection and union of
variables (corresponding to OR-gate and AND-gate in FTs).

As an example, it is assumed that in the BN shown in Fig. 2, it is
not clear whether PC_signal¼PC[PT or PC_signal¼PC\PT, but it is
known that the likelihood of the former is three times that of the
later, i.e., Prð[Þ ¼ 3Prð\Þ. This lack in certainty can be modeled by
adding another parent to PC_signal’s parent set, e.g., node Function

with two states [ and \ such that PrðFunctionÞ ¼ Prð[,\Þ ¼
ð0:75,0:25Þ, and also by modifying its corresponding CPT (Fig. 5).

As previously mentioned, most prior beliefs used to construct
the model are based on domain experts’ opinions. So, it is likely to
have different beliefs about probability parameters due to differ-
ent experts assessing the model values. BN allows the incorpora-
tion of different judgments in the network structure by adding an
auxiliary node to the parent set of the node of interest. The newly
added node has one state for each expert, and its prior probability
represents the reliability degree of each expert. For instance, it is
assumed that two experts (e.g., Exp1 and Exp2) have been asked to
assess the causal effect of A_valve_ctrl on Alarm. So, node Expert

with two states Exp1 and Exp2 is added to parent set of Alarm in
which the reliability of the first expert is 60% and that of the
second is 40% (i.e., PrðExpertÞ ¼ PrðExp1,Exp2Þ ¼ ð0:6,0:4Þ).

The different opinions of experts about the conditional depen-
dence of Alarm on A_valve_ctrl are included in the corresponding
CPT (Fig. 5).

The prior and posterior probabilities of the modified BN have
been also listed in Table 3 (columns 7 and 8, respectively). For
ease of comparison, variables Function and Expert are not included
in Table 3; however, their posterior probabilities given failure of
Feed_ctrl are PrðFunctionÞ ¼ ð0:7926,0:2047Þ, showing an increase
in the likelihood of union relationship between PT and PC, and
PrðExpertÞ ¼ ð0:5632,0:4368Þ, showing an increase in the reliability
degree of Exp2. It is to be noted that after the foregoing modifica-
tions, the prior probability of the leaf node, i.e., Feed_ctrl,
increases from 0.1146 to 0.1155, showing the effect of uncertainty
consideration in the model.

The most probable configuration of events, leading to Feed_ctrl

failure after the modifications, is identified to be the same as
before, but with a different probability as 0.0734. The new most
probable configuration determines that the states of Function and
Expert have to be Union and Exp1, respectively.
5. Conclusion

The present study has illustrated the use of BNs in both
accident occurrence probability estimation and updating in the
light of new information. It also focused on various modeling
techniques to capture some types of uncertainty that are common
in accident analysis and risk assessment. The first half of the



Fig. 5. Modified BN to capture functional uncertainty and expert opinion.

N. Khakzad et al. / Reliability Engineering and System Safety 96 (2011) 925–932 931
paper was devoted to common features of FT and BN, where a FT
was used to construct a corresponding BN. Although both meth-
ods resulted in similar estimations for accident occurrence prob-
ability, it was the BN that was able to update the prior beliefs
about the accident by taking new information into account and by
taking advantage of probability updating. The second half of the
paper discussed those aspects and modeling issues of BN which
FT is incapable of handling, such as multi-state variables, depen-
dent failures and uncertainty. The main conclusions of this study
can be summarized as follows:
1.
 By propagation of new observations through the network, BN
updates the prior probabilities, yielding posterior probabilities.
These posteriors, unlike priors that are based mainly on
generic data and expert knowledge, are more specific to the
accident studied and better reflect its characteristics.
2.
 The calculation of CPTs requires a comprehensive study of
causal relationships and a huge amount of data usually
provided by domain experts. However, the current study has
shown that a BN is a superior technique to a traditional FT
even if its CPTs are developed deterministically (Fig. 3). This
may be helpful in situations where there is not enough
information to estimate the CPT values probabilistically.
3.
 Considering minimal cut-set importance, it is observed that BN
produces a more reliable measure of such importance by
providing the most probable configuration of primary events
leading to an accident. Unlike minimal cut-sets, the most
probable configuration provides information about both occur-
rence and non-occurrence of primary events.
4.
 Each FT can be mapped to its corresponding BN, while a BN
does not necessarily have an equivalent FT due to multi-state
variables, different causal relationships rather than simple
Boolean functions such as OR-gate and AND-gate, and sequen-
tially dependent failures. BNs are also able to handle uncer-
tainty without coupling by other methods, i.e., by simply
modifying their structure.

In general, BN has a much more flexible structure than FT,
fitting to a wide range of accident scenarios. Its ability for
abductive reasoning and uncertainty handling makes it a more
suitable technique for real-time accident analysis and more
importantly, for design and evaluation of safety measures. How-
ever, before BNs can be used in a comprehensive accident risk
assessment, their applicability in accident consequence analysis,
safety barrier implementation, and decision making must be
examined thoroughly.
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