5™ Lecture: Elements of Classical Reliability Theory

Aim of the present lecture

The aim of the present lecture is to introduce the basic elements of the classical reliability
theory. First the problem of assessing the reliability of components and systems. based on
observed times till failure, is addressed and the important concept of failure rates is
introduced. Thereafter it 1s illustrated how such failure rates may be updated in a Bayesian
framework based on additional information. Subsequently some generic data on failure rates
are provided for electrical and mechanical components and systems. Finally an introduction 1s
given to the structural reliability theory. This theory 1s especially applicable for the reliability
analysis of components and systems, such as e.g. building structures. for which in general it is
not possible to achieve relevant mformation on the time till failure. A more elaborate
treatment of the methods of structural reliability is provided in a separate lecture. On the basis
of the present lecture, it 1s expected that the students should acquire knowledge and skills in

regard to:

¢ For which types of components and systems can the reliability be assessed on the basis of
observed failure data?

e  What 1s a reliability function?

e What is a failure rate function?

e How can the failure rate be estimated based on observed times till failure?
e How can failure rates be updated based on additional information?

e What is a hazard function?

e  When 1s it relevant to use methods of structural reliability?

e What is understood by the fundamental case?

e What is a safety margin?

e What is the interpretation of the reliability index?

5.1




5.1 Introduction

Reliability analysis of technical components and systems became a central i1ssue during the
Second World War where significant problems were encountered especially in regard to the
performance of electrical systems. As an example the war systems of the, at that time modem
battle ships. were reported non-operable in up to about 40 % of the time. This situation which
could be quite eritical in times of war was caused predominantly by failures of electrical
components (radio bulbs, ete.) and the efforts initiated at that time in order to improve the
performance of the electrical systems may be seen as an initiation point for the analysis of the
reliability of technical components.

Since then reliability analysis of technical components and systems has been further
developed and adapted for application in a wide range of different industries including the
aeronautical industry, the nueclear industry. the chemical industry, the building industry and
the process industry. It 1s important to appreciate that reliability analysis is only one of the
constituents of a decision analysis or more popularly speaking risk assessment, namely the
part which is concerned about the quantification of the probability that a considered
component or system is in a state associated with adverse consequences, e.g. a state of failure,
a state of damage or partial function. ete. The theoretical basis for reliability analysis 1s thus
the theory of probability and statistics and derived disciplines such as operations research,
systems engineering and quality control.

Classical reliability theory was. as previously indicated. developed for systems consisting of a
large number of components of the same type under the same loading and which for all
practical matters behaved statistically independent. The probability of failure of such
components and systems can be interpreted in terms of failure frequencies observed from
operation experience. Furthermore, due to the fact that failure of the considered type of
components develops as a direct consequence of an accumulating deterioration process the
main focus was directed towards the formulation of probabilistic models for the estimation of
the statistical characteristics of the time until component failure. Having formulated these
models the observed relative failure frequencies can be applied as basis for their calibration.

In structural reliability analysis the situation 1s fundamentally different due to the fact that
structural failures are very rare and tend to occur as a consequence of an extreme event such
as ¢.g. an extreme loading exceeding the load carrying capacity i.e. the resistance. which
possibly is reduced due to deterioration such as e.g. corrosion or fatigue. In addition to this no
useful information can be collected in regard to relative failure frequencies as almost all
structural components and systems are unique either due to differences in the choice of
material and geometry or by differences in the loading and exposure characteristics. When
considering the estimation of failure probabilities for structural components it is thus
necessary to establish a probabilistic modelling of both the resistances and the loads and to
estimate the probability of failure on the basis of these. In this process due account must be
given to the inclusion of all available statistical information concerning the material properties
and the load characteristics.



In the following sections an introduction shall first be given of the classical reliability theory
and thereafter consider the problem of structural reliability analysis with a view to the special
characteristics of this problem.

5.2 Introduction to the classical reliability theory

Classical reliability analysis was developed to estimate the statistical characteristics of the
lives of technical systems and components. These characteristics include the expected failure
rate. the expected life and the mean time between failures.

Modelling the considered system by means of logical trees where the individual components
are represented by the nodes it is possible to assess the key characteristics regarding the
system performance including e.g. the probability that a system will fail during a specified
period, the positive effect of introducing redundancy into the system and the effect of
inspections and maintenance activities.

The probability of failure of a component is expressed by means of the reliability function

R(t) defined by:
R(t)=1-F(t)=1-P(T <f) (5.1)
where T 1s a random variable describing the tmme till failure and Fi(f) 1s its cumulative

distribution function. If the probability density function for T. 1e. fi(f). 1s known the

reliability function may be defined alternatively by:
R (t)=1- fy(r)dz = [ fr(r)dr (5.2)
0 t

The reliability function thus depends on the type of the probability distribution function for
the tume till failure. In the same way as when considering the probabilistic modelling of load
and resistance variables. prior information may be utilised when selecting the distribution type
for the modelling of the random time till failure for a technical component. The appropriate
choice of distribution function then depends on the physical characteristics of the deterioration
process causing the failure of the component.

In the literature several models for the time till failure have been derived on the basis of the
characteristics of different deterioration processes. These include the exponential distribution,
the Weibull distribution. and the Birnbaum and Saunders distribution. In case of a Weibull
distribution the reliability function has the following form:

R (1) =1-F(f)=1- u—exp{—(%}ﬁ}) - exp[—%:uﬁ]. r=0 (5.3)

Having defined the reliability function R;(r) the expected life may be derived as:

E[T]=_C[f-fr(r}a'r =£thr)dr (5.4)



which may be seen by performing the integrations in parts. provided that lim - R.(r) = 0:
t—pm

E[T]= £ fp()dr =[t-F(0)], —!FT(T)dT

=[t-=R ()], _JQ(I_RT(T))'&I
=[] -[t- R O], -[] +J'Rr(r}a‘r

= R (n)dr -[t- Ry ()] = | R()dx

The failure rate is a measure of how the probability of failure changes as a function of time.
The failure rate thus depends on the reliability function R (f). The probability of failure

within any given interval [r.r+ ) t] is the probability that the actual life lies in the interval
and is thus given as:

Pt<T<t+6t)=F(t+0t)-F(f)=R.(t)- R, (t+5 1) (5.6)

The failure rate function z(t) being the average rate at which failures occur in a given time

interval provided that the considered component has not failed prior to the interval is thus:

o R =R (1+5 1) _
0= (5.7)

The failure rate function for most technical systems is known as the bath-tub curve illustrated

in Figure 5.1.
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Figure 5.1: Hlustration of a failure rate function — the bath-tub curve.

The bath-tub curve is typical for many technical components where in the initial phase of the
life the birth defects, production errors etc. are a significant source of failure. When the
component has survived a certain time it implies that birth defects are not present and
consequently the reliability increases. Thereafter a phase of steady state is entered and
subsequently a phase of ageing. The steepness of the ageing part of the failure rate function 1s
important. The more pronounced and the steeper the transition 1s from the steady phase to the



ageing phase of the life of the component the more obvious is the decision on when to

exchange or maintain the component.

The shape of the failure rate function has also implications on the meaningful mspection
strategies. which may be implemented as a means for condition control of a component. For
components exhibiting a constant failure rate function. i.e. components with an exponential
distribution as given in Equation (5.8) for the time till failure, inspections are of little use.

fr(0)=z-exp(~z-1)) (5.8)

In this case the component does not exhibit any degradation and there is not really anything to
inspect. However, for components with a slowly increasing failure rate function mspections
may be useful and can be planned such that the failure rate does not exceed a certain critical
level. If the failure rate function is at first quasi constant and then followed by an abrupt
increase. mspections are also of little use. However. in this case. a replacement strategy may

be more appropriate.
The hazard function h(t) is defined through the instantaneous failure rate as the considered
interval approaches zero. Thus the hazard function is given as:

L RI(T)—RT(f+{St)= 1 | d =&
O s s R0 Rr(r)[ dertr}J R (1) =9

and the probability that a component having survived up till the time ¢ will fail in the next
small interval of time dr 1s then h(z)dr.

An important i1ssue is the assessment of failure rates on the basis of observations. As
mentioned previously data on observed failure rates may be obtained from databanks of
failures from different application areas. Failure rates may be assessed on the basis of such
data by

n
=1 (5.10)
T'ﬁ!.

where n, 1s the number of observed failure in the time interval 7 and n, 15 the number of

components at the start of the considered time interval. Care must be exercised when
evaluating failure rates on this basis. If the components are not new in the beginning of the
considered time interval the failure rates may be overestimated and if the interval is too short
no observed failures may be present. For such cases different approaches to circumwvent this
problem may be found in the literature, see e.g. Stewart and Melchers (1997). Alternatively
the failure rates may also be assessed by means of e.g. Maximum-Likelihood estimation
where the parameters of the selected probability distribution function for the time till failure
are estimated on the basis of observed times till failures.

Due to the lack of data and general uncertainties associated with the applicability of the
available data for a specific considered case. failure rates may themselves be modelled as
uncertain. The basis for the a-priori assessment of the uncertainty associated with the failure
rates may be established subjectively or preferably as a bi-product of the Maximum-
Likelihood estimation of the distribution parameters of the probability distribution function

n
'.)I



for the tume till failure. Having established an a-priori model for the failure rate for a
considered type of component another important issue 1s how to update this estimate when
new or more relevant information about observed failures become available.

Applying the rule of Bayes the posterior probability density function for the failure rate may
be established as:

G- L(t|:)- £2(2)
jL(t|:)-fz'(:}d:

(5.11)

Assuming that the time till failure for a considered component is exponential distributed the
likelihood function is given as:

n

L(t|z) =] Jzexp(-z-1) (5.12)

i=1

Example 5.1 — Pump failure modelling

For the purpose of illustration a risk analysis of an engineering system including a number of
pumps is being performed. As a basis for the estimation of the probability of failure of the
individual pumps in the system, frequentistic data on pump failures are analysed. From the
manufacturer of the pumps it 1s informed that a test has been made where 10 pumps were put
in continuous operation until failure. The results of the tests are given in Table 5.1, where the
times till failure (1n years) for the individual pumps are given.

Pump Time till failure
1 024
2 3.65
3 125
4 0.2
5 1.79
6 0.6
7 0.74
8 1.43
9 0.53
10 013
Table 5.1: Observed time till failure for a considered type of pumps.

Based on the data in Table 5.1 the annual failure rate for the pumps must be estimated with
and without using the assumption that the times between failure is exponentially distributed.

Based on the data alone the sample mean value of the observed times till failure 1s calculated.
This yields 1.06 years and the number of failures per year (failure rate) z is thus the
reciprocal value equal to 0.95.



If it is assumed that only data from pumps failed within the first year are available the
corresponding failure rate 1s 2.46. If it 1s assumed that the times tll failure are exponentially
distributed the Maximum Likelihood Method can be used to estimate the failure rate.

The probability density function for the time till failure may be written as:
Jr(t)=zexp(—z-1) (5.13)

The log-Likelihood is written as
10

I(t]z2)=> (In(z) - z-1,) (5.14)
=

where f; are the observed tumes till failure.

By maximising the log-Likelihood function with respect to z using all observations in Table
5.1 a failure rate equal to 0.95 is obtained. which 1s identical to the rate found above using all
observations. If only the observations where failure occur within the first year are used in the
Maximum Likelihood estimation. a failure rate equal to 2.45 is obtained. close to the value
obtained above using only the data from the first year.

It thus seems that if only the observations of failure from the first year are available — which
indeed could be the situation in practice — the failure rate is estimated rather imprecisely.
However there is one approach, still using the Maximum Likelihood method, whereby this
problem can be circumvented to a large degree. If the log-Likelihood function is formulated as:

f(t|z]|=1van h1(1—FI(1}}+ih1(:)—: f,=—nz +ih1(z)—z t, (5.15)
i=1 i=l

where n, 1s the number of pumps not failed within the first year and n, 1s the number of

pumps failed within the first yvear. and furthermore the probability distribution function of the
time till failure m the first year 1s given as:

F(t)=1-exp(—z t) == F.(1)=1-exp(-z) (5.16)

An estimate of the failure rate equal to 0.93 is then obtained which 1s significantly better than
when not utilising the information that a number of the pumps did not experience failure
within the first year.

Using the Maximum Likelihood Method has the advantage that the uncertainty associated
with the estimated parameters is readily provided through the second order partial derivative
of the log-Likelihood function. Furthermore the estimated parameters may be assumed
Normal distributed.

Using all samples in the estimation the uncertain failure rate may then be found to be Normal
distributed with mean value equal to 0.95 and standard deviation equal to 0.42. The (prior)
probability density function for the uncertain failure rate f,(z) is illustrated in Figure 5.2.
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Figure 5.2: Prior probability density of the failure rate, likelihood of additional sample and posterior
probability density for the failure rate.

For the sake of illustration it is now assumed that a reliability analysis is considered for a new
type of pumps. for which no failure data are available. Not knowing better the failure rate for
the new type of pumps is represented by the prior probability density for the failure rate for
the pump type for which data are available. However, appreciating that the new type of pumps
may behave different it is decided to run three experiments on the new type of pumps
resulting in the times to failure, given in Table 5.2.

Pump Time till failure
1 32
2 35
3 i3
Table 5.2: Time till failure for new pumps.

Assuming that the failure rate is distributed according to the prior probability density function
for the failure rate the likelihood function L(t‘:} of the three sample failure times

t=(1.t,.5,)" =(3.2.3.5.3.3)" can be calculated from:
3

L(t‘:) =] Jzexp(-2x,) (5.17)
=l

which is illustrated in Figure 5.2. The updated probability density function for the uncertain

failure rate can be determined using Bayes’s rule as:
. 1 .
f2E0==L{t]2) () (5.18)

where the constant ¢ 1s determined such that the integral over the posterior probability density
equals to one. The rule of Bayes is thus seen to provide a means for combining information of
various sources and thus facilitated a combination of subjective information and experiment
results in quantitative risk analysis.

From Figure 5.2 it is noticed that whereas the prior probability density for the uncertain
failure rate 1s symmetric (and by the way also allows for realisations in the negative domain!)



the posterior probability density function has been strongly influenced by the Likelihood
function and only allows for positive realisations of the failure rate.

Finally in a risk analysis context the failure rates are normally applied for the assessment of

the probability of failure for the considered pump type.

Assuming as initially that the times till failure are exponentially distributed the probability

that a pump will fail within the time period T. for given failure rate z is given by:

P.(T|z)=1-exp(—zT) (5.19)

However. as the failure rate 1s uncertain the probability of failure must be integrated out over
the possible realisations of the failure rate weighed with their probabilities, i.e.:
1
Pr(T)=1- | exp(=2T) fz(2)dz (5.20)
0
thus providing the total unconditional probability of failure. In the present example the
probability of failure can be found to be equal to 0.38 taking basis in the posterior probability
density function for the failure rate. This compares to a failure probability equal to 0.61 which
1s found using the prior probability density function.

5.3 Failure rate data for mechanical systems and components

In Table 5.3-5.6 a number of generic data on failure rates are provided based on Stewart and
Melchers (1997). for various types of components in the mechanical, electrical and offshore
industry, Generic data may serve as a starting point for the analysis of the reliability
performance of technical/mechanical components and systems. However, it is very important
always to attempt to achieve relevant data for the specific systems and components being
subject to analysis. Specific data can then be applied alone, if there 1s sufficient data to
estimate reliable estumates of failure rates, or they may be applied in conjunction with generic
data serving as the prior information within the framework of Bayesian updating.



All Modes Low Rec High
Failures/10° hours 0.31 1.71 21.94
Failures/10% cycles 0.11 0.75 1.51
Repair time (hours) 0.3 0.74 13
Failures/10° hours
Failure mode Low Rec High
Catastrophic 0.13 0.7 9
Zero or maximum output 0.06 0.31 4.05
No change of output with change of mput 0.01 0.04 045
Functioned without signal 0.03 018 7 34
No function with signal 0.03 0.17 2.16
Degraded 0.14 0.75 9.65
Erratic output 0.03 0.17 222
High output 0.03 0.15 1.93
Low output 0.01 0.06 0.77
Functioned at improper signal level 0.05 0.29 3.67
Intermitted operation 0.02 0.08 1.06
Incipient 0.04 0.26 3.29

Note: Rec refers fo the ‘Best estimate”.
Low, High rgfers to the best and worst data points (i.e. this establishes the range)

Table 5.3: Reliability data for temperature instruments, controls and sensors, Stewart and Melchers
(1997} (Source: adapted from IEEE (1954)).

Environmental Stress Modifier for failure rate

High temperature x1.75

Higch radiation x1.25

High humidity x 1.50

Hich vibration x 2.00

Table 5.4: Environmental modification factors for temperature instrument, control and sensor

reliability data to be multiplied on the failure rates in Table 5.3 depending on the
environmental stress. Stewart and Melchers (1997) (Source: adapted from IEEE (1984)).



Population Samples Agoregated time in service (10“]“-5) Number of demands

17 10 Calendar time Operational time
03826 0.0002 1135
No. of Failure rate (per 10° hrs) Repair (man hours)
Failure mode Failures Lower Mean Upper Min. | Mean | Max.
Critical 80* 120 210 310 - 86 -
13 %# 26000 47000 78000,
Failed to start T5* 100 190 90| 24 86| 120
g = 6200 32000 69000,
5% 2 23 51 3 93 130
Failed while running
4 *F 4600 15000 36000
Degraded 24* 30 71 1200 - 180 -
E R 0 14000 45000
High temperature 22* 22 66 120 5] 190 400
E R 0 14000 44000,
Low output 1* 0.14 2.6 12 - - -
Unknown 1* 0.14 2.6 12] - 96 -
Incipient
Unknown
Al Modes 303 * 680 340 1000 - 81 -
45 %% 87000 180000 280000,

Note: *denotes calendar time, ** denotes aperational time

Table 5.5: Reliability data for fire water pumps on offshore platforms, Stewart and Melchers (1997)
(Source: adapted from OREDA (1984)).

Component and Failure mode Unit Best estimate Low High
Electric Motors

Failure to start 1/D 3x107 1x10™ 1x10°

Failure to run (normal) 1/hrs 1x107 3x10° 3x10”

Failure to run (extreme environment) 1/hrs 1x107 1x10™ 1x107
Battery Power systems

Failure to provide proper output 1/hrs 3x107 1x10° 1x107
Switches

Limit - failure to operate 1/D 3x10™ 1x10™ 1x107

Torque - failure to operate 1/D 1x10™ 3x107 3x107

Pressure - failure to operate 1/D 1x10™ 3x10™ 3x107

Manual - fail to transfer 1/D 1x107 3x10° 3x10”

Contacts short 1/hrs 1x107 1x10°% 1x10°¢
Pumps

Failure to start 1/D 1x10° 3x10™ 3x107

Failure to run (normal) 1/hrs 3x10” 3x10° 3x107

Failure to run (extreme environment) 1/hrs 1x107 1x107 1x107
Valves (motor operated)

Fails to operate 1D 1x10” 3x107 3x107

Failure to remain open 1D 1x10™ 3x107 3x107

External leak or rupture 1/hrs 1x10*® 1x10° 1x10”
Circuit breakers

Failure to operate 1/D 1x10° 3x10™ 3x107

Premature transfer 1/hrs 1x107 3x107 3x10°




Continued from the last page
Fuses
Premature, open 1/hrs 1x107% 3x107 3x107°
Failure to open 1/D 1x107 3x10° 3x107
Pipes
< 75mm. rupture 1/hrs 1x107 3x10™M 3x10*
= 75mm. rupture 1/hrs 1x10™° 3x107™" 3x10°
Welds
Leak, contamnment quality 1/hrs 3x107 1x107° 1x107
Table 5.6: Reliability data for mechanical and electrical components. D denotes demand. Stewart and
Melchers (1997) (Source: adapted from RSS (1975)).
5.4 Reliability analysis of static components

Concerning the reliability of static components and systems such as structures the situation is
different in comparison to that of mechanical and electrical components. For structural
components and systems first of all no relevant failure data are available, secondly failures
occur significantly more rarely and thirdly the mechanism behind failures i1s different.
Structural failures occur not predominantly due to ageing processes but moreover due to the
effect of extreme events. such as e.g. extreme winds. avalanches, snow fall. earthquakes. or

combinations hereof.

For the reliability assessment it 1s therefore necessary to consider the influences acting from
the outside i.e. loads and influences acting from the mside 1.e. resistances individually. It is
thus necessary to establish probabilistic models for loads and resistances including all
available information about the statistical characteristics of the parameters mnfluencing these.
Such information is e.g. data regarding the annual extreme wind speeds, experiment results of
concrete compression strength. etc. These aspects have been treated in a previous chapter. A
significant part of the uncertainties mnfluencing the probabilistic modelling of loads and
resistances 1s due to lack of knowledge. Due to that, the failure probabilities. which may be
assessed on this basis. must be understood as nominal probabilities, 1.e. not reflecting the true
probability of failure for the considered structure but rather reflecting the lack of knowledge

available about the performance of the structure.

For a structural component for which the uncertain resistance may be modelled by a random
variable R with probability density function fi(r) subjected to the load s the probability of

failure P. may be determined by:
P.=P(R=s)=Fy(s)=P(R/s=1) (5.21)

In case that also the load 1s uncertain and modelled by the random wvariable § with probability
density function f(s) the probability of failure P is:

P.=P(R<S)=P(R-S<0)= J Fo(x) fs (x)dx = J fp, () (5.22)



assuming that the load and the resistance variables are statistically independent. This case 1s
called the fundamental case in structural reliability theory. The integration in Equation (5.22)
1s 1llustrated in Figure 5.3,
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Figure 5.3: A) INustration of the integration in Equation (5.22) and B) the distribution of the failure

probability over the realisations of the resistance R and the loading S.

In Figure 5.3(A). the contributions to the probability integral of Equation (5.22) are illustrated.
Note that the probability of failure 1s not determined through the overlap of the two curves.
In Figure 5.3(B) the integral of Equation (5.22) is illustrated as a function of the realisations
of the random variables R and §. The integral of this is not equal to 1 but equal to the failure
probability P .

There exists no general closed form solution to the integral in Equation (5.22) but for a
number of special cases solutions may be derived. One case 1s when both the resistance
variable R and the load variable S are Normal distributed. In this case the failure probability
may be assessed directly by considering the random wvariable M . often referred to as the

safety margin:

M=R-S5 (5.23)
whereby the probability of failure may be assessed through:

P.=P(R-S<0)=P(M <0) (5.24)

where M 1s also Normal distributed with parameters u,, = u, — 1. and standard deviation

Ty =1,‘cr§ +0; .



The failure probability may now be determined by use of the standard Normal distribution
funetion as:
0—pu
P =o(—2) = 0(-p) (5.25)
Oy
where u,,/o,, = 8 1s called the reliability index. The geometrical interpretation of the safery

index 1s illustrated in Figure 5.4.
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Figure 5.4: IMustration of the probability density function for the Normal distributed safety margin M .
From Figure 5.4 it is seen that the reliability index £ is equal to the number of the standard
deviation by which the mean value of the safety margin M exceeds zero. or equivalently the

distance from the mean value of the safety margin to the most likely failure point.

As indicated previously closed form solutions may also be obtained for other special cases.
However. as numerical methods have been developed for the purpose of solving Equation
(5.22) these will not be considered in the further.

In the general case the resistance and the load cannot be deseribed by only two random
variables but rather by functions of random variables, e.g.:

R=A(X)
§=fX)

where X i1s a vector with 7 so-called basic random variables. As indicated in Equation (5.26)

(5.26)

both the resistance and the loading may be a function of the same random wvariables and R
and § may thus be statistically dependent.

Furthermore the safety margin
M=R-5=f£(X)- £,(X)=g(X) (5.27)

1s in general no longer Normal distributed. The function g(x) is usually denoted the limit

state function, 1.¢. an indicator of the state of the considered component. For realisations of the



basic random variables X for which g(X)<0 the component is in a state of failure and
otherwise for g(X) > 0 the component is in a safe state.

Setting g(X) =0 defines a (n-1) dimensional hyper surface in the space spanned by the n
basic random variables. This hyper surface 15 denoted the failure surface and thus separates all

possible realisations x of the basic random wvariables X resulting in failure, 1.e. the failure
domain, from the realisations resulting in a safe state. the safe domain.

Thereby the probability of failure may be determined through the following n dimensional
integral:

B= [ fulxdx (5.28)

gl=)=0
where fi(x) is the jomnt probability density function for the vector of basic random variables

X and the integration is performed over the failure domain.

The solution of the integral in Equation (5.28) is by no means a trivial matter except for very
special cases and in most practical applications numerical approximate approaches must be
pursued. Here it shall, however. be emphasized that usual numerical integration techniques are
not appropriate for the solution of the integral in Equation (5.28) due to the fact that the
numerical effort to solve it with sufficient accuracy in case of small failure probabilities
becomes overwhelming and in addition to this the integration domain is not easy to represent
for such algorithms.

This i1ssue shall not be treated further in the present context but deferred to the next chapter
describing some of the basics of the so-called methods of structural reliability.






