Exercise 2: Crystal directions, reciprocal lattice

1. Let's consider a cubic crystal. a) Draw crystal planes (511), $(23 \overline{3})$, (100). b) Define the Miller indices of the crystal planes in figures I and II.

2. a) Calculate the primitive vectors of the reciprocal lattice for the simple hexagonal lattice. b) What has the ratio c / a to be, so that it remains the same also in the reciprocal lattice.
3. A V groove is etched in the direction $<011>$ on the (100) surface of a silicon wafer. The sidewalls of the groove are (111) planes. V groove is formed because the etching speed of the (100) plane is much higher than that of (111) planes. a) What is the angle ϕ at the bottom of the V groove? b) In GaAs wafers, a V groove is formed in the $[01 \overline{1}]$ direction but in the direction [011] etching forms a so-called dovetail groove (any idea why?). Calculate the bottom angle of the dovetail groove.

4. X-ray diffraction is a method used to characterize semiconductors. X-ray $\left(\lambda_{\text {СиK } \alpha_{1}}=0.15406 \mathrm{~nm}\right)$ in $\langle 011\rangle$ direction hits a single crystalline silicon sample with (100) surface plane and sidewalls in $<011>$ directions. Lattice constant of silicon is 0.54311 nm . The surface normal $\hat{n}=[100]$ and the incident and the diffracted
 ray lies in the same plane (shown in the figure). Bragg's law is fulfilled in
diffraction: $2 d \sin \theta_{B}=\lambda$, where θ_{B} is the Bragg angle and $d=\frac{a_{0}}{\sqrt{h^{2}+k^{2}+l^{2}}}$ is the distance between successive planes.
a) Calculate the Bragg angle in (400) diffraction.
b) Calculate the angle between the surface and the incident beam in $\{311\}$ diffraction (in principle, there are 2 possible angles).
