ELEC-3140 Semiconductor physics

Exercise 5: Density of states, carrier statistics

- 1. A semiconductor structure, in which the charge carriers can only move in one dimension, is called a quantum wire. Therefore, the structure has energy barriers and small dimensions in the other two dimensions to create the confinement. Calculate the density of states function for a quantum wire with the width L_x , the height L_y and the length L_z $(L_z >> L_x, L_y)$.
- Calculate the energy at which the electron distribution of a parabolic conduction band has its maximum in a 3-dimensional non-degenerate (not highly doped) semiconductor crystal. Use the Maxwell-Boltzmann distribution.
- 3. Calculate the electron and hole densities in intrinsic GaAs at T = 300 K and T = 500 K. The effective masses are $m_e^* = 0.067 m_0$ ja $m_h^* = 0.45 m_0$ and the general temperature dependence of the band gap (Varshni equation) is

$$E_g(T/K) = E_g(0) - \frac{\alpha T^2}{T+\beta} ,$$

where for GaAs: $E_g(0) = 1.519 \text{ eV}, \alpha = 5.405 \cdot 10^{-4} \text{ eV/K}, \beta = 204 \text{ K}.$

4. Silicon contains $8 \cdot 10^{16}$ cm⁻³ arsenic atoms and $2 \cdot 10^{16}$ cm⁻³ boron atoms. Calculate the electron and hole concentrations at thermal equilibrium. Calculate also the position of the Fermi level compared to intrinsic Fermi level E_{Fi} and to the conduction band minimum E_c . Si (T = 300 K): $n_i = 1.5 \cdot 10^{10} \text{ cm}^{-3}$ ja $N_c = 2.8 \cdot 10^{19} \text{ cm}^{-3}$.