ELEC-3140 Semiconductor physics

This is the last exercise!

Exercise 9: pn-junction

- 1. Resistivity and mobility of the p-side of a silicon diode are $\rho = 0.1 \,\Omega$ cm and $\mu_p = 450 \,\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}$; for n-side $\rho = 2 \,\Omega$ cm and $\mu_n = 1500 \,\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}$. The area of the junction is $A = 0.05 \,\mathrm{cm}^2$ and minority carrier lifetime in the n-side is 50 µs and in the p-side 15 µs. For silicon $n_i = 1.45 \cdot 10^{10} \,\mathrm{cm}^{-3}$ and $\varepsilon_r = 11.9$ at $T = 300 \,\mathrm{K}$. For non-biased junction, calculate a) built-in voltage, b) the width of the depletion region and c) the maximum electric field strength.
- 2. Let us consider an abrupt pn-junction in silicon $(n_i = 10^{10} \text{ cm}^{-3})$ with doping concentrations of $N_A = 1 \cdot 10^{16} \text{ cm}^{-3}$ and $N_D = 5 \cdot 10^{16} \text{ cm}^{-3}$. a) Calculate the built-in voltage of the junction. b) Calculate the width of the depletion region, the maximal value of the electric field and the potential difference over the n-side in the cases of the external bias V_a value of -2.5, 0, and 0.5 V.
- 3. A pn-diode has the same doping concentration on both the p- and the n-side. The maximum electric field at thermal equilibrium is -13 kV/cm and the overall width of the depletion region is 1 μ m. Use dielectric constant of $\varepsilon = 12 \varepsilon_0$. a) What is the built-in voltage of the diode? b) What is the donor concentration in the n-side and the acceptor concentration in the p-side? c) What is n_i at the temperature of 300 K?
- 4. Calculate the current density caused by generation-recombination in a silicon pn-diode with the reverse bias voltage of V = -4 V. Generation rate and effective lifetime are given by

$$g = \frac{n_i}{2\tau_0}$$
 and $\tau_0 = \frac{\tau_n + \tau_p}{2}$,

respectively. Assume that generation rate is constant in the depletion region. Compare the result with the reverse current of an ideal pn-diode with the same bias. Values: $N_a = 10^{17} \text{ cm}^{-3} N_d = 10^{17} \text{ cm}^{-3}$, $n_i = 1.5 \cdot 10^{10} \text{ cm}^{-3}$, $\varepsilon_r = 11.9$, $\tau_p = \tau_n = 10^{-6} \text{ s}$, $D_p = 10 \text{ cm}^2/\text{s}$, $D_n = 20 \text{ cm}^2/\text{s}$.