Modern methods for power plant condition monitoring

RAINE JOKINEN AFRY TEST SERVICES

AFRY at a glance

INDUSTRIAL & DIGITAL SOLUTIONS

Advanced Automation Connected Products Automotive Design & Engineering Food & Pharma IT Solutions Specialized Technical Services Systems Management

ENERGY

Renewable Energy & Thermal Power Hydro Transmission & Distribution Nuclear Contracting

MANAGEMENT CONSULTING

Energy Sector Bioindustry Sector Market Analysis Strategic Advice Operational Excellence M&A and Transactions

PROCESS INDUSTRIES

Bioindustries Chemicals Pulp, board, paper & tissue Mining & Metals Smart solutions: - Health & Safety - Sustainability - AFRY Smart Site & digitalisation

INFRASTRUCTURE

Transportation Buildings Project Management Water Environment Architecture & Design

WE HAVE

16,000

Employees globally (as of 2021)

WE HAVE APPROX. NET SALES

19 bsek

in 2020

NUMBER OF COUNTRIES WITH OFFICES

>40

NUMBER OF COUNTRIES WITH PROJECTS

>100

4 Growth Drivers

Infrastructure

Food & Life Science

r____

Clean Energy

Bioindustry

2 2021-09-23 | MODERN METHODS FOR POWER PLANT CONDITION MONITORING

AFRY Test services

- Guarantee, performance and condition monitoring of boilers, turbines and flue gas cleaning systems
- Reliable emission and process values
- Noise and vibration modelling and measurements
- Wind resource energy measurements
- TAS Technical advisory services
- 3rd party verification Reliable test results for design and process purposes
- Process analysis and consulting

Condition monitoring

- Vibration measurements
- Noise measurements
- Periodical inspections
- Bearing temperatures
- Elongation measurements
- Performance tests

Performance tests

- 1. Guarantee tests
- tests to ensure the delivered equipment perform as promised
- for total plant and also main equipment (boiler, turbine, flue gas condenser)
- testing mainly with calibrated test instruments installed expressly for testing purposes
- test of guaranteed performance indicators
 - e.g. generator power, steam capacity, boiler efficiency
- comparison to guaranteed values
- measurement methods defined in standards

- 2. Condition monitoring
- similar tests and methods as guarantee tests
- performed traditionally mainly for steam turbines
- test of condition monitoring indicators
 - e.g. expansion efficiencies, flow passing capacities, TTDs
- objective is to find out possible changes in performance indicators & parameters
- comparison to previous test results

Why performance testing?

1. Guarantee tests

- needed so the byer can safely accept the delivered equipment
 - some parameters have absolute guarantees, and some can be settled with liquidated damages
- baseline for future condition monitoring

2. Condition monitoring

- no direct measurements for the condition monitoring indicators
 - $-\,$ e.g. the mechanical condition of the rotating equipment are monitored continuously
- requirement for measurement accuracy and reliability
- long periods between overhauls
 - get information about possible problems
 - make informed decisions regarding the overhaul

Steam turbine condition monitoring -Example timeline

Regular condition monitoring tests:

- Secure economic and safe operation
- Maximize turbine life span and efficiency
- Information for overhaul planning

Test codes & measurement standards

- Boilers
 - EN 12952-15 Water tube boilers and auxiliary installations Part 15: Acceptance tests
 - ASME PTC 4 Fired Steam Generators
- Steam turbines
 - DIN 1943 Thermal acceptance tests of steam turbines
 - IEC 60953 Rules for steam turbine thermal acceptance tests
 - ASME PTC 6 Steam turbines
- Gas turbines
 - ISO 2314 Gas turbines Acceptance tests
 - ASME PTC 22 Gas turbines
- Flow measurement
 - ISO 5167 Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full
- Thermodynamical properties
 - IAPWS-97 Thermodynamic Properties of Water and Steam
 - VDI 4670 Thermodynamic properties of humid air and combustion gases

Evaluating measurement results

Based on test average values:

- Flow calculations
- Enthalpy calculations
 - $-\,$ steam, water, flue gas & air
- Mass balance calculations
- Heat balance calculations
- Equipment- & test specific calculations
 - isentropic efficiencies
 - flow-passing capacities
 - boiler efficiencies
 - etc.
- Correction calculations
 - needed to make results comparable
 - e.g. heat balance model correction

Uncertainty calculations

9 2021-09-23 | MODERN METHODS FOR POWER PLANT CONDITION MONITORING

Project example

Guarantee test for new plant:

- 85 MW fluidized bed boiler
- 75 MW steam turbine
- 50 MW flue gas condenser

— The tests:

- 6 turbine test points
- 4 boiler test points
- 2 flue gas condenser test points
- $-\,$ over 2 weeks of testing at site
- Measurements
 - 60 temperatures
 - 25 pressures
 - 10 steam & water flows
 - flue gas emissions
 - indoor & outdoor noise
 - surface temperatures
 - $-\,$ various samples and analysis

Planning – Executing - Reporting

OUR OFFERING - ONLINE MONITORING

Continuous online condition monitoring

OUR OFFERING - ONLINE MONITORING

Continuous online condition monitoring

- Continuous overview of the current asset condition
- Improvement area identification based on calibrated process information
- Minimize failure costs and downtime by pinpointing sneaking deterioration early
- Faster troubleshooting and improved process optimization opportunities
- Automated reporting and prediction analysis

Tailored reporting and set-ups typically needed.

Parameter examples

- Efficiency / throughput
- Heat transfer surfaces
- Steam and power flows and values
- Leak survey
- Optimisation of emissions and additives
- Pressure drops
- Terminal temperature differences
- Recovered heat and load
- Turbine constants and performance
- Optimisation and operation strategy
- Measurement fault analysis

Making Future

