ELEC-E8101 Digital and Optimal Control

 Exercise 1The problems marked with an asterisk (\star) are not discussed during the exercise session. The solutions are given in MyCourses and these problems belong to the course material.

1. Find the z-transform of the following sequences using the definition:
a) $y[k]=1, k=0,1,2,3, \ldots$.
b) $y[k]=a^{k}, k=0,1,2,3, \ldots$ and a is a constant.
c) $y[k]=e^{-k h / T}, k=0,1,2,3, \ldots$, and h and T are constants. Is this the same result as in part b) of the exercise?
2. Given that

$$
Y(z)=\frac{0.792 z^{2}}{(z-1)\left(z^{2}-0.416 z+0.208\right)}
$$

a) Determine the value of $y[k]$ as $k \rightarrow \infty$.
b) Verify your result using MATLAB.
3. Find the inverse z -transform of the following expression

$$
Y(z)=\frac{\left(1-e^{-a h}\right) z}{(z-1)\left(z-e^{-a h}\right)}, a \text { is a constant. }
$$

4. Using z-transforms solve for $y[k]$ from the following difference equation:

$$
y[k+2]-1.5 y[k+1]+0.5 y[k]=u[k+1],
$$

where $u[k]$ is the unit step starting at $k=0$, i.e.,

$$
u[k]= \begin{cases}1 & \text { if } k \geq 0 \\ 0 & \text { if } k<0\end{cases}
$$

Initial conditions: $y[-1]=1, y[0]=0.5$.
*5. Prove that the following holds:

$$
\mathcal{Z}\left\{\frac{1}{2}(k h)^{2}\right\}=\frac{h^{2} z(z+1)}{2(z-1)^{3}} .
$$

Hint: Begin by transforming $\mathcal{Z}\{k h\}$.

