

ELEC-E8125 Reinforcement Learning Reinforcement learning in discrete domains

Ville Kyrki 28.9.2021

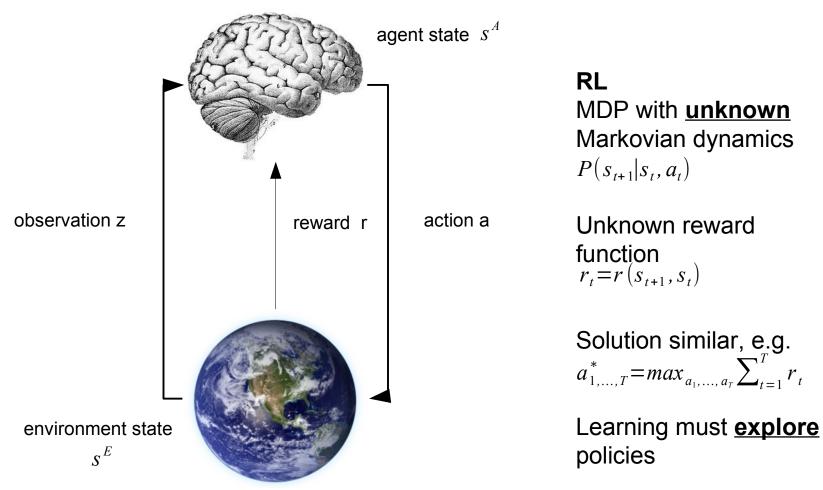
Today

- Reinforcement learning
- Policy evaluation vs control problems
- Monte-Carlo and Temporal difference

Learning goals

- Understand basic concepts of RL.
- Understand Monte-Carlo and temporal difference approaches for policy evaluation and control.
- Be able to implement MC and TD.

Reinforcement learning



Aalto University School of Electrical Engineering How does this then relate to the control case?

Reinforcement learning

- MDP with unknown dynamics (*T*) and reward function (*r*)
- Model based RL: Estimate MDP, apply MDP methods.
 - Estimate MDP transition and reward functions from data.
- Can we do without *T* and *r*?
 - Can we evaluate a policy (estimate value function) if we have multiple episodes (in episodic tasks) available?

Monte-Carlo policy evaluation

- Complete episodes give us samples of return G.
- Learn value of particular policy from episodes under that policy.

$$V_{\pi}(s) = E_{\pi}[G_t|s_t = s]$$
 $G_t = \sum_{k=0}^{n} \gamma^k r_{t+k+1}$

• Estimate value as empirical mean return.

- Each time state *s* visited in an episode, N(s)=N(s)+1 $S(s)=S(s)+G_t$ V(s)=S(s)/N(s)

• When number of episodes approaches infinity, V(s) converges $V(s) \rightarrow V_{\pi}(s)$

Aalto University School of Electrical Engineering Èmpirical mean approaches true mean.

Can we do without episodes?

Temporal difference (TD) – learning without episodes

• For each state transition, update estimate towards another estimate:

 $V(s_t) = V(s_t) + \alpha \left(\underline{r_{t+1}} + \gamma V(s_{t+1}) - V(s_t) \right)$

- Approach called TD(0)
- Compare to MC $V(s_t) = V(s_t) + \alpha (G_t - V(s_t))$

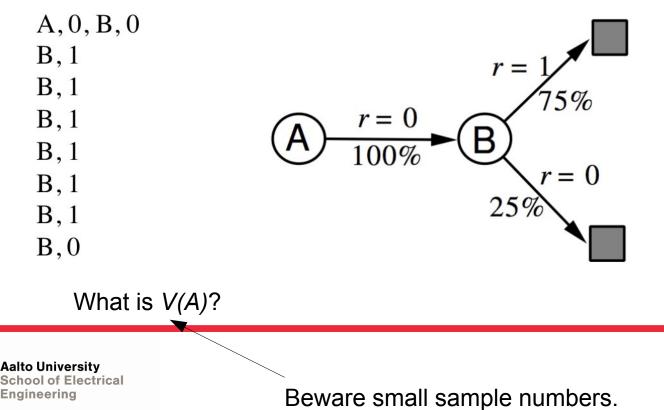
Estimated return. Uses already gained information about value-function.

True return.

What if we have limited data?

Batch learning

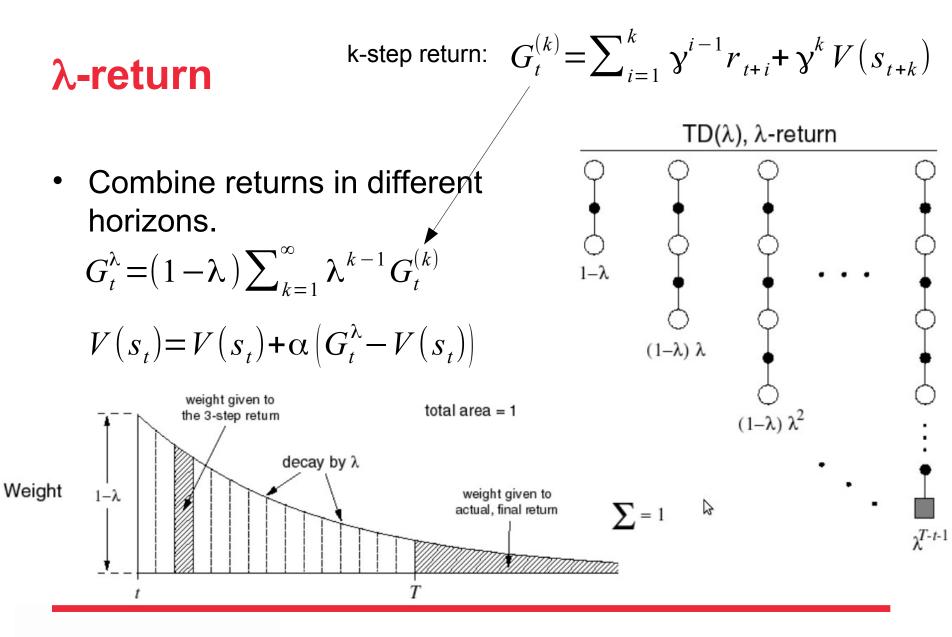
- For limited number of trials available:
 - Sample episode k.
 - Apply MC or TD(0) to episode k.



MC vs TD

- MC
 - Needs full episodes. Only works in episodic environments.
 - High variance, zero bias \rightarrow good but slow convergence.
 - Does not exploit Markov property \rightarrow often better in non-Markov env.
- TD (esp. TD(0))
 - Can learn from incomplete episodes and on-line after each step.
 - Works in continuing environments.
 - Low variance, some bias \rightarrow often more efficient than MC, discrete state TD(0) converges, more sensitive to initial value.
 - Exploits Markov property \rightarrow often more efficient in Markov env.

Can we combine these / find intermediate solution?

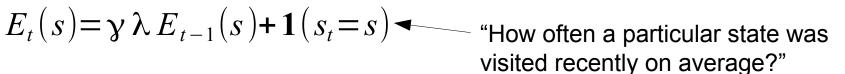


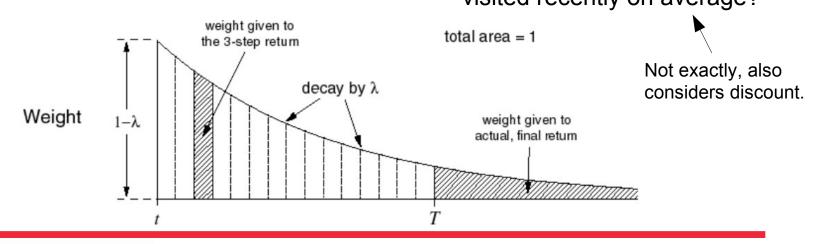
Aalto University School of Electrical Engineering

Requires complete episodes! Can we survive without? First: an alternative viewpoint!

Causes and effects – eligibility traces

- Which state is the "cause" of a reward?
- Frequency heuristic: most frequent states likely.
- Recency heuristic: most recent states likely.
- *Eligibility trace* for a state combines these:





Backward-TD(λ**)**

• Extend TD time horizon with decay (λ).

Note: all states are updated after each step, not only the "current" state

- After episode, update $V(s) = V(s) + \alpha E_t(s) (r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$
- TD(1) equal to MC. What if $\lambda = 0$ $E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(s_t = s)$
- Eligibility traces way to implement *backward* TD(λ), *forward* TD(λ) requires episodes.

Slightly different in on-line case.

Control / decision making?

- So far we only found out how to estimate value functions for a particular policy.
- Can we use this to optimize a policy?

Policy improvement and policy iteration

- Given a policy π , it can be improved by
 - Evaluating its value function
 - Forming a new policy by acting greedily with respect to the value function
- This always improves the policy.
- Iterating multiple times called *policy* iteration.
 - Converges to optimal policy.

Monte-Carlo Policy iteration

• Can we choose action using value function *V*(*s*)?

 Greedy policy improvement using action-value function Q(s,a) does not require model.

$$\pi'(s) = arg max_a Q(s, a)$$

 Estimate Q(s,a) using MC (empirical mean = "calculate average").

Note: calculate frequencies for all state-action pairs.

Exploration-exploitation trade-off: How can we ensure that we try different actions?

Ensuring exploration

- Simple approach: ε-greedy exploration:
 - Explore: Choose action at random with probability ϵ .
 - Exploit: Be greedy with probability 1- ϵ .

$$\pi(a|s) = \frac{\epsilon/m + 1 - \epsilon}{\epsilon/m} \quad if \ a = argmax_a' Q(s, a')$$

for any other action

• How to converge to optimal policy? - Idea: reduce ε over time. - For example, for *k*:th episode $\varepsilon = \frac{b}{b+k}$ "Greedy in Limit with Infinite Exploration" (GLIE) constant

Can we use TD instead of MC for control?

SARSA

- Idea: Apply TD to Q(S,A).
 - With ϵ -greedy policy improvement.
 - Update each time step.

$$Q(s,a) = Q(s,a) + \alpha (r + \gamma Q(s',a') - Q(s,a))$$

Compare with

$$V(s_t) = V(s_t) + \alpha \left(r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right)$$

- SARSA converges under
 - GLIE policy (greedy in the limit of infinite exploration),

$$-\sum_{t=0}^{\infty}\alpha_t = \infty \qquad \sum_{t=0}^{\infty}\alpha_t^2 < \infty$$

Aalto University School of Electrical Engineering

For example $\alpha_t = 1/t$



SARSA(λ)

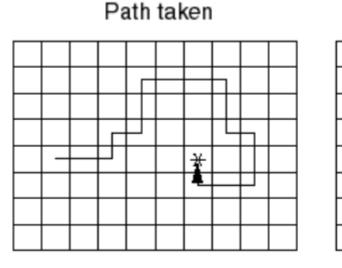
- Instead of TD(0) update in SARSA, use TD(λ) update.
- Backward SARSA(λ)

 $E_{t}(s,a) = \gamma \lambda E_{t-1}(s,a) + \mathbf{1}(s_{t} = s, a_{t} = a)$ $Q(s,a) = Q(s,a) + \alpha E_{t}(s,a) (r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_{t}, a_{t}))$

Compare to

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(s_t = s)$$

$$V(s) = V(s) + \alpha E_t(s) (r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$$

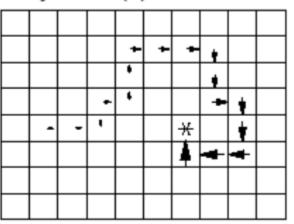


Action values increased by one-step Sarsa

ж

L

Action values increased by Sarsa(λ) with λ =0.9



On-policy vs off-policy learning

- *On-policy learning* (methods so far)
 - Use a policy while learning how to optimize it.
 - "Learn on the job".
- Off-policy learning
 - Use another policy while learning about optimal policy.
 - Can learn from observation of other agents.
 - Can learn about optimal policy when using exploratory policy.

Q-learning

- Use ε-greedy *behavior policy* to choose actions.
- Target policy is greedy with respect to Q. $\pi(s) = \arg \max_a Q(s, a)$
- Update target policy greedily: $Q(s,a) = Q(s,a) + \alpha (r + \gamma \max_{a'} Q(s',a') - Q(s,a))$
- Q converges to Q*.

Assume we take greedy action at next step.

- In reinforcement learning, dynamics and reward function of MDP are unknown.
- MC approaches sample returns from full episodes.
- TD approaches sample estimated returns (biased).

Next: Extending state spaces

- What to do if
 - discrete state space is too large?
 - state space is continuous?
- Readings
 - Sutton & Barto, ch. 9-9.3, 10-10.1

