
Lecture 4:
Mathematical treatment of plasma,
Fluid approach (in more sense than one)



Today’s menu

• From 6D equilibrium plasma to 3D fluid
• How to get macroscopic = measurable quantities from the 6D

distribution function
• How to get the dynamic equations for fluid quantities: concept of

velocity moments
• More drifts: diamagnetic drift diamagnetic current
• From 2-fluid model to 1-fluid model to…
• Magnetohydrodynamics, MHD
• The concept of a flux tube
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What do we actually want to know about
plasma?
Luckily kinetic approach gives unnecessarily detailed description: we
want to know the dynamics of the macroscopic = measurable quantities.

The distribution function 𝑓 𝒓,𝒗, 𝑡 contains all the information.

How to get the macroscopic quantities from it?
‘Easily’ – at least as long as the plasma is in equilibrium 
velocity/energy distribution given by the Maxwellian
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Plasma as ’stuff’ (mömmö)

But what are we really looking for?
• Density
• Temperature
• Flow
• pressure
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Measurable quantities
are macroscopic
quantities, given by
contributions from
individual particles
summed up together



Put the distribution function to work…

Here it is most natural to think of 𝑓𝑠(𝒓,𝒗; 𝑡) as phase space density.
• Usual density: we want to know the # of pcles in a volume element dV

• We do not care about the velocity of the particles integrate over the entire velocity space

• Flow: net motion of the plasma
• mv⋅f(r,v;t) = momentum times # of guys having it. Sum them up for net momentum!

• Temperature: temperature is the measure of average energy
• ½ mv2 ⋅ f(r,v;t) = kinetic energy times # of guys having it. Sum them up!

• Pressure: a kind of measure of uneven distribution of energy
• m(v-V) (v-V) f(r,v;t) = energy related to deviations from flow V times its probability
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And mathematically

Fluid quantities are thus obtained as integrals over velocity space of 𝑓𝑠
multiplied by different functions of 𝒗, called velocity moments of 𝑓𝑠

0th-order moment gives the particle density 𝑛𝑠: 𝑛𝑠 = ∭𝑑3𝑣 𝑓𝑠(𝒓,𝒗, 𝑡)
 charge density of the plasma, 𝜌𝑐 = ∑𝑞𝑠𝑛𝑠, and
 mass density of the plasma, 𝜌𝑚 = ∑𝑚𝑠𝑛𝑠

1th-order moment gives the flow velocity 𝑽𝒔: 𝑛𝑠𝑽𝒔 = ∭𝑑3𝑣 𝒗𝑓𝑠(𝒓,𝒗, 𝑡)
 Plasma current density 𝒋𝑐 = ∑𝑞𝑠𝑛𝑠𝑽𝑠
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… and more ’special moments’
Second-order moment(s):

• Average energy: < 𝐸𝑘𝑖𝑛 >= ∭𝑑3𝑣 1
2
𝑚𝑣2𝑓𝑠(𝒓,𝒗, 𝑡)

• Pressure: 𝑷𝑠 = ∭𝑑3𝑣 𝑚(𝒗 − 𝑽𝑠)(𝒗 − 𝑽𝑠)𝑓𝑠(𝒓,𝒗, 𝑡) ; a tensor !!
• Off-diagonal terms: physically shear viscosity
• Diagonal terms: these give what we normally consider pressure

• Isotropy all diagonal terms identical scalar pressure: 𝑝𝑠 = 1
3
𝑡𝑟(𝑷𝑠)

And even a third-order moment:

• Heat flux density: 𝒒𝑠 = ∭𝑑3𝑣 1
2
𝑚(𝑣 − 𝑉𝑠)2(𝒗 − 𝑽𝑠)𝑓𝑠(𝒓,𝒗, 𝑡)

4.10.2021
7



How to get dynamical equations for the
macroscopic quantities?
Recall last lecture: the dynamical equation for distribution fct 𝑓𝑠 is

• The Liouville equation (most general)
• The Boltzmann equation (separate fluctuations into a collision term)
• Vlasov equation (for phenomena fast compared to collisinal time scales)

Most macroscopic phenomena, such as a multitude of waves, occur on
time scales fast compared to collisions
 Let’s start with the Vlasov equation !
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From kinetic to fluid equations

Since we got the macroscopic quantities by integrating away the velocity
dependences, let’s do the same for the Vlasov equation!
This is called ’taking velocity moments’ of the Vlasov equation.
Like earlier, different moments correspond to multiplying the Vlasov
equation by different powers of velocity 𝒗 and integrating over 𝒗 -space:

• Zeroth-order velocity moment: multiply by 𝒗𝟎 = 1.
• First-order moment: multiply by 𝒗.
• Second-order moment: multiply by 𝒗𝒗 … or something of 2nd order.
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From kinetic to fluid equations

• Zeroth-order moment continuity equation:

• First-order momentmomentum conservation:

• Second-order moment energy conservation
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New physics brought about by fluid
approach …
Can we recover the same physics we found for single particles?
In particular, are the drifts still there…?
Let’s look at the fluid equation of motion:

𝑚𝑠𝑛𝑠
𝑑𝑽
𝑑𝑡

= −𝛻𝑝 + 𝑞𝑛 𝑬 + 𝒗 × 𝑩

The drifts are just… drifts, no acceleration. So let’s ignore the LHS.
Take cross product with 𝑩
0 = −𝛻𝑝 × 𝑩 + 𝑞𝑛 𝑬 × 𝑩 + (𝒗⊥× 𝑩) × 𝑩

= −𝛻𝑝 × 𝑩 + 𝑞𝑛 𝑬 × 𝑩 + 𝒗⊥𝐵2

4.10.2021
11



… is the diamagnetic drift !
So for the perpendicular drift we get 𝒗⊥= 𝒗𝐸𝑥𝐵 + 𝒗𝐷
Where 𝒗𝐸𝑥𝐵 is our familiar 𝐸𝑥𝐵 drift, but we also get a new drift:

𝒗𝐷 = − 𝛁𝑝×𝑩
𝑞𝑛𝐵2

, the diamagnetic drift !

Not present in the single particle picture because
it needs a collection of particles building up a
pressure gradient, 𝛁𝑝.

The origin of the drift is easy to understand by looking
at the special case where 𝛁𝑝 = 𝑇𝜵𝑛
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And we get…. Diamagnetic current !

Diamagnetic drift depends on the charge electrons and ions drift in
opposite directions

Let’s assume isothermal plasma 𝛁𝑝 = 𝑇𝛻𝑛 ; always ∃ density gradient

 𝒋𝑑𝑖𝑎 = 𝑛𝑒 𝒗𝒊 − 𝒗𝒆 = 𝑇𝑖 − 𝑇𝑒
𝑩×𝛁𝑛
𝐵2
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A problem is observed…

The equations do not ’close’: each equation obtained by a velocity
moment will require the knowledge of the higher-order moment !!

This problem is eliminated by various approaches of closure.

The most common closure is to introduce the equation of state:

𝑝 = 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑛γ
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From a collection of species to a
plasma
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From several species to single plasma

We now have something called the two-fluid model:
dynamical equations separately for the ion fluid and the electron fluid.

For many applications it is reasonable (and sufficient) to consider the
plasma as a single fluid.

What are the macroscopic quantities relevant for a single fluid plasma?
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Single fluid quantities for the dynamical
equations
Recall from the first lecture: plasma is quasineutral
 Plasma 𝑛𝑒 ≈ 𝑛𝑖 ≡ 𝑛

How about plasma flow? For the net flow, take the center-of-mass flow:
• plasma flow: 𝑽 = 𝑚𝑖𝑽𝑖+𝑚𝑒𝑽𝑒

𝑚𝑖+𝑚𝑒

But the ions and electrons have different charges electrical currents!
• Define plasma current: 𝒋 = −𝑛𝑒(𝑽𝒆 − 𝑽𝒊)

How about pressure? Must be the sum of electron and ion pressures:
• Plasma pressure: 𝑝 = 𝑝𝑒 + 𝑝𝑖
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Equations for the plasma fluid
The equations of motion for the single-fluid plasma we get by
appropriately summing up/substracting the equations for different species

Start with the 0th-order moment: 𝜕𝑛𝑠
𝜕𝑡

+ 𝛻 ⋅ 𝑛𝑠𝑽𝑠 = 0

Define mass density of the plasma fluid: 𝜌 ≡ 𝑀𝑛𝑖 + 𝑚𝑛𝑒
• Multiply electron equation with 𝑚, ion equation with 𝑀 and add


𝜕𝜌
𝜕𝑡

+ 𝛻 ⋅ 𝜌𝑽 = 0
• Multiply electron and ion equations with their charges and add

𝛻 ⋅ 𝑽 = 0
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Equation of motion for plasma fluid

Take the 1st moments, multiply by masses and add

𝑛 𝜕
𝜕𝑡

𝑀𝑽𝑖 + 𝑚𝑽𝑒 = 𝑒𝑛 𝑽𝑖 − 𝑽𝑒 × 𝑩− 𝛻𝑝

Where we have assumed scalar pressure 𝑝 = 𝑝𝑖 + 𝑝𝑒.
Note that the electric field has disappeared!
And we get the single-fluid equation of motion:

𝜌
𝜕𝑽
𝜕𝑡

= 𝒋 × 𝑩 − 𝛁𝑝
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But that’s not all, folks…

Use the 1st moment again, this time by substracting the two equations,
cross-multiplied by each others’ masses…

𝑀𝑚𝑛
𝜕
𝜕𝑡

𝑽𝑖 − 𝑽𝑒 = 𝑒𝑛 𝑀 + 𝑚 𝑬 + 𝑒𝑛 𝑚𝑽𝑖 +𝑀𝑽𝑒 × 𝑩−𝑚𝛻𝑝𝑖 + 𝑀𝛻𝑝𝑒
𝑀𝑚𝑛
𝑒

𝜕
𝜕𝑡

𝒋
𝑛

= 𝑒𝜌𝑬+ 𝑒𝑛 𝑚𝑽𝑖 + 𝑀𝑽𝑒 × 𝑩 −𝑚𝛻𝑝𝑖 +𝑀𝛻𝑝𝑒

Be clever:

𝑚𝑽𝑖 + 𝑀𝑽𝑒=𝑀𝑽𝑖 +𝑚𝑽𝑒 −𝑀 𝑽𝑖 − 𝑽𝑒 + 𝑚 𝑽𝑖 − 𝑽𝑒 = 𝜌
𝑛
𝑽 − (𝑀 −𝑚) 𝒋

𝑛𝑒
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… and we get …
Rearrange the terms :

𝑬 + 𝑽 × 𝑩 =
1
𝑒𝜌

𝑀𝑚𝑛
𝑒

𝜕
𝜕𝑡

𝒋
𝑛

+ 𝑀 −𝑚 𝒋 × 𝑩 + 𝑚𝛻𝑝𝑖 −𝑀𝛻𝑝𝑒

Now we will drop out terms that are generally small:
• Usually 𝑝𝑖 ≈ 𝑝𝑒  drop 𝑚𝛻𝑝𝑖
• The time derivative of current density typically not important in MHD

phenomena

𝑬 + 𝑽 × 𝑩 ≈ 1
𝑒𝑛

𝒋 × 𝑩− 𝛻𝑝𝑒
Terms on the RHS are typically much smaller (… or cancel out…!)

𝑬 + 𝑽 × 𝑩 ≈ 0 ; Ohm’s law …
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Full set of single-fluid equations

𝜕𝜌
𝜕𝑡

+ 𝛻 ⋅ 𝜌𝑽 = 0
𝛻 ⋅ 𝑽 = 0

𝜌
𝜕𝑽
𝜕𝑡

= 𝒋 × 𝑩 − 𝛁𝑝
𝑬 + 𝑽 × 𝑩 ≈ 0
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Magnetohydrodynamics, MHD
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Dynamics of the EM fields

But there are also electric and magnetic fields in the equations?
… and plasma current, which supposedly generates magnetic field …
So we need also dynamic equations for the fields = Maxwell’s equations:

𝛻 ⋅ 𝑩 = 0
𝛻 ⋅ 𝑬 ≈ 0 ;
𝛻 × 𝑩 = 𝜇0𝐣

𝛻 × 𝑬 = −
1
𝑐
𝜕𝑩
𝜕𝑡

Where we have neglected the so-called displacement current ∝ 𝜕𝑬
𝜕𝑡
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plasma is quasineutral



Complete set of ideal MHD equations

Fluid equations:

𝜕𝜌
𝜕𝑡

+ 𝛻 ⋅ 𝜌𝑽 = 0
𝛻 ⋅ 𝑽 = 0

𝜌
𝜕𝑽
𝜕𝑡

= 𝒋 × 𝑩− 𝛁𝑝
𝑬+ 𝑽 ×𝑩 ≈ 0

Field equations:

𝛻 ⋅ 𝑩 = 0
𝛻 ⋅ 𝑬 = 0

𝛻 × 𝑩 = 𝜇0𝐣

𝛻 × 𝑬 = −
1
𝑐
𝜕𝑩
𝜕𝑡
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Forced marriage between B and plasma:
Frozen-in condition
• consider fieldlines through a surface S in plasma
 magnetic flux Ψ = ∫ 𝑩 ⋅ 𝑑𝑺
• Let the surface move together with the plasma
 time rate of change of Ψ has two parts:

• Explicit time dependence of 𝑩: 𝜕Ψ
𝜕𝑡

= ∫ 𝜕𝑩
𝜕𝑡
⋅ 𝑑𝑺 = −∫ 𝛁 × 𝑬 ⋅ 𝑑𝑺

• Change due to moving plasma: 𝜕𝑑𝑺
𝜕𝑡

= ∫ 𝑽 × 𝑑𝒍 𝜕Ψ
𝜕𝑡

= ∫ 𝑩 ⋅ 𝑽 × 𝑑𝒍 = ∫ 𝑩 × 𝑽 ⋅ 𝑑𝒍

• Use Stokes Total change: 𝜕Ψ
𝜕𝑡

= −∫ 𝛁 × 𝑬 + 𝑽 × 𝑩 ⋅ 𝑑𝑺 = 0 !!  (Ohm’s law)

• Fieldlines are stuck with the plasma! Concept of a flux tube



Including the effect of collisions

The ideal MHD equations we derived from the Vlasov equation, which
neglects the effect of collisions.
However, many important phenomena, the least of which is not the
resistivity itself, require taking into account also the collisions.

Ideal MHD is valid only when the phenomenon is very fast – compared to
the collisional time scale.

In more general case we take the moments of the Boltzmann equation …
More complicated math skipped in this course
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Complete set of resistive MHD equations

Fluid equations:

𝜕𝜌
𝜕𝑡

+ 𝛻 ⋅ 𝜌𝑽 = 0
𝛻 ⋅ 𝑽 = 0

𝜌
𝜕𝑽
𝜕𝑡

= 𝒋 × 𝑩− 𝛁𝑝
𝑬 + 𝑽 × 𝑩 ≈ 𝜂𝒋

Field equations:

𝛻 ⋅ 𝑩 = 0
𝛻 ⋅ 𝑬 = 0

𝛻 × 𝑩 = 𝜇0𝐣

𝛻 × 𝑬 = −
1
𝑐
𝜕𝑩
𝜕𝑡
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So the difference to ideal MHD appears miniscule: just
resistivity popping up in Ohm’s law. But its effect is
dramatic, e.g., field lines can now reconnect and diffuse …


