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A B S T R A C T

As more renewable energy is developed, energy storage is increasingly important and attractive, especially grid-
scale electrical energy storage; hence, finding and implementing cost-effective and sustainable energy storage
and conversion systems is vital. Batteries of various types and sizes are considered one of the most suitable
approaches to store energy and extensive research exists for different technologies and applications of batteries;
however, environmental impacts of large-scale battery use remain a major challenge that requires further study.
In this paper, batteries from various aspects including design features, advantages, disadvantages, and en-
vironmental impacts are assessed. This review reaffirms that batteries are efficient, convenient, reliable and
easy-to-use energy storage systems (ESSs). It also confirms that battery shelf life and use life are limited; a large
amount and wide range of raw materials, including metals and non-metals, are used to produce batteries; and,
the battery industry can generate considerable amounts of environmental pollutants (e.g., hazardous waste,
greenhouse gas emissions and toxic gases) during different processes such as mining, manufacturing, use,
transportation, collection, storage, treatment, disposal and recycling. Battery use at a large scale or grid-scale
(> 50MW), which is widely anticipated, will have significant social and environmental impacts; hence, it must
be compared carefully with alternatives in terms of sustainability, while focusing on research to quantify ex-
ternalities and reduce risk. Alternatives such as pumped hydro and compressed air energy storage must be
encouraged because of their low environmental impact compared to different types of batteries.

1. Introduction

Energy underlies the welfare, economics and development state of
societies. The dominant primary energy sources are fossil fuels; more
specifically, oil, coal and gas, which supply ~85% of mankind’s pri-
mary energy [1,2]. Population growth, industrial development and
economic growth lead to increasing energy demand, particularly in
emerging large-population economies [3–8]. Growing demand leads to
environmental challenges such as global warming and climate change,
air pollution health impacts, and risk of soil and water contamination
[7,9–13]. According to Boden and Andres [14] and Heard et al. [15],
atmospheric CO2 concentration increased from ~360 ppm to ~400 ppm
between 1995 and 2015, and fossil fuel CO2 emissions rose from ~6.4

Gt C yr−1 in 1995 to ~9.8 Gt C yr−1 in 2013. To affect these trends,
sustainable carbon-free or low-carbon energy sources (wind, solar,
tidal, wave, nuclear, etc.) and energy storage must increase quickly.
Large-scale energy storage (> 50MW) is vital to manage daily fluctu-
ating power demands on large grids and to cope with the variable and
intermittent nature of renewable sources as they grow to provide large
proportions of the energy to grids of all sizes.

Energy storage systems (ESSs) can be classified into five major
groups [9,16–18]:

1. Mechanical systems such as pumped hydroelectric storage (PHS),
compressed air energy storage (CAES), falling weights, and flywheel
energy storage (FES);

https://doi.org/10.1016/j.rser.2019.01.023
Received 7 November 2018; Received in revised form 3 January 2019; Accepted 10 January 2019

Abbreviations: BES, Battery Energy Storage; BEV, Battery Electric Vehicle; BIT, Beijing Institute of Technology; CAES, Compressed Air Energy Storage; CTG, Cradle-
To-Gate; DLC, Double Layer Capacitor; DMC, Dimethyl Carbonate; ESSs, Energy Storage Systems; EC, Ethylene Carbonate; FES, Flywheel Energy Storage; GHG,
Greenhouse Gas; HEV, Hybrid Electric Vehicle; LCA, Life Cycle Assessment; LFP, Lithium Iron Phosphate; Li-ion, Lithium-ion; Li-S, Lithium-sulphur; LMO, Lithium
Manganese Oxide; Na-S, Sodium-sulphur; Ni-Cd, Nickel-cadmium; Ni-MH, Nickel-metal hydride; Ni-Zn, Nickel-zinc; NMC, Lithium Manganese Cobalt Oxide; Pb-A,
Lead-acid; PHEV, Plug-in Hybrid Electric Vehicle; PHS, Pumped Hydroelectric Storage; RFB, Redox Flow Battery; SMES, Superconducting Magnetic Energy Storage;
SNG, Synthetic Natural Gas; SWOT, Strengths, Weaknesses, Opportunities and Threats; TES, Thermal Energy Storage; VRB, Vanadium Redox Battery; Zn-C, Zinc-
carbon

⁎ Corresponding author at: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada.
E-mail address: a7dehgha@uwaterloo.ca (A.R. Dehghani-Sanij).

Renewable and Sustainable Energy Reviews 104 (2019) 192–208

Available online 21 January 2019
1364-0321/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13640321
https://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2019.01.023
https://doi.org/10.1016/j.rser.2019.01.023
mailto:a7dehgha@uwaterloo.ca
https://doi.org/10.1016/j.rser.2019.01.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2019.01.023&domain=pdf


2. Chemical systems (e.g., hydrogen storage with fuel cell/electrolyser,
synthetic natural gas (SNG), and reversible chemical reactions);

3. Electrochemical systems; in particular, different types of batteries;
4. Electrical systems including capacitors, supercapacitors, and super-

conducting magnetic energy storage (SMES); and,
5. Thermal systems1 (e.g., sensible heat storage, latent heat storage, as

well as thermal absorption and adsorption systems).

ESSs can be used for a wide range of applications for different time
and magnitude scales [9]; hence, some systems are appropriate for
specific narrow applications (e.g., supercapacitors), whereas others can
be chosen for broader applications (e.g., CAES). ESSs must satisfy var-
ious criteria such as: capacity reserve, short or long-time storage, quick
response time, stationary or portable, energy density rating, conversion
rate, storage costs, security, end-use (e.g., grid connected or stand-
alone), environmental impacts, and storage time limits [9,19,20]. Some
important characteristics such as lifetime, cycling times, cycle effi-
ciency, energy density and power density are compared between dif-
ferent ESSs in Table 1. Table 2 compares various types of ESSs based on
costs, such as power capital cost, energy capital cost, as well as oper-
ating and maintenance cost. The provided data in Tables 1–2 has been
extracted from both academic research and industry application regions
[18]. Table 3 is a comparison among several energy storage technolo-
gies obtained through SWOT2 analysis. Additionally, several compar-
isons of different types of ESSs using four distinct methods are depicted
in Figs. 1–4. Of greatest interest in terms of decarbonization, factoring
in more renewables, and reasonable ease of integration with existing
infrastructure are grid-scale ESSs, defined roughly as approaches cap-
able of 50MW scale or more.

ESSs have broad and various specifications, applications, benefits
and limitations (Tables 1–3 and Figs. 1–3). For example, FES systems
have high efficiency, power density and stability, as well as fast re-
sponse time [9,21,63,64], but have disadvantages including high self-
discharge rates, low overall magnitude, safety and high cost. CAES
systems have advantages such as grid-scale potential, flexibility, long
life, relatively low operation and maintenance costs, as well as low self-
discharge rates [65]; however, the efficiency of these systems is mod-
erate [21] and the geological suitability of the storage site is a key
constraint [65]. Batteries are efficient, convenient, reliable, easy to use,
and need low maintenance, but environmental concerns, high cost
(compared to utility power), need for critical materials (e.g., Li and Co),
low energy density, and restricted shelf life are some of batteries’ lim-
itations [66].

Provision and consumption of electricity occur simultaneously
[9,67], so the quantity generated must meet a varying demand. ESSs
help balance supply and demand [68] through short- to long-term
storage duration periods, while aiding in frequency and voltage control
at local and large grid scales. Electrical energy must be converted into
another form to be stored [69], and batteries are an obvious storage
option. Batteries will certainly play an important role in integration of
intermittent renewable sources (wind, solar), as they smooth output
and enhance renewable energy versatility in micro-generation systems,
allowing them to supply and distribute steady electrical power [70–72].
Leaving cost and environmental impact aside, BES is perhaps the most
efficient method to stabilize power grids that access important quan-
tities of renewable energy (e.g., > 10%) [21]. Among different types
with a share of the BES market, Li-ion is the most prominent with a 55%
market share (Fig. 5) [72].

BES systems suitable for grid-scale applications are increasingly
mentioned because all experts predict a continued strong growth in
battery deployment, either as stand-alone arrays or as a distributed
system (many plugged-in E-vehicles). This paper examines impacts of
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Table 2
Comparison of various types of ESSs in terms of costs [18,21].

System Power capital cost ($/kW) Energy capital cost ($/kWh) Operating and maintenance cost

PHS 2500–4300 [47], 2000–4000 [24] 5–100 [22], 10–12 [33] 0.004 $/kWh [29], ~ 3 $/kW/year [54]
Large–scale CAES 400–800 [22], 800–1000 [24] 2–50 [22], 2–120 [55], 2 [29] 0.003 $/kWh [29], 19–25 $/kW/year [54]
Over-ground small CAES 517 [33], 1300–1550 [56] 1MVA from £ 296 k [32], 200–250

[56]
Very low [32]

FES 250–350 [22] 1000–5000 [22], 1000–14,000 [55] ~ 0.004 $/kWh [29], ~ 20 $/kW/year
[54]

TES 200–300 [22], 250 [27], 100–400 [27] 20–50 [22], 30–60 [22], 3–30 [22] –
SMES 200–300 [22], 300 [33], 380–489 [56] 1000–10,000 [22], 500–72,000 [33] 0.001 $/kWh [29], 18.5 $/kW/year [54]
Capacitor 200–400 [22] 500–1000 [22] 13 $/kW/year [54], < 0.05 $/kW h [37]
Supercapacitor 100–300 [22], 250–450 [56] 300–2000 [22] 0.005 $/kWh [29], ~ 6 $/kW-year [33]
Hydrogen fuel cell 500 [33], 1500–3000 [57] 15 [33], 2–15 €/kW h [44] 0.0019–0.0153 $/kW [57]
Battery Energy Storage (BES) Pb-A 300–600 [22], 200–300 [33], 400 [49] 200–400 [22], 50–100 [42], 330 [49] ~ 50 $/kW/year [54]

Li-ion 1200–4000 [22], 900–1300 [42], 1590
[47]

600–2500 [22], 2770–3800 [47] –

Na-S 1000–3000 [22], 350–3000 [55] 300–500 [22], 350 [49], 450 [58] ~ 80 $/kW/year [54]
Ni-Cd 500–1500 [22] 800–1500 [22], 400–2400 [42] ~ 20 $/kW/year [54]
Vanadium Redox 600–1500 [22] 150–1000 [22], 600 [58] ~ 70 $/kW/year [54]
Zn-Br 700–2500 [22], 400 [59], 200 [33] 150–1000 [22], 500 [60] –

Table 3
SWOT analysis conducted on several grid-scale ESSs [9,19,61,62].

System Strengths Weaknesses Opportunities Threats

CAES High capacity; Need for underground cavities; Can prospectively be adapted for
distributed storage

Popularity related to thermal power
plants;Low cost per kWh; Minor needs for

power electronic converters; Need for fuel (e.g., H2 and CH4) if gas
turbines used

Probably, increasing the fuel costs
over timeNegligible storage losses;

Storing energy for more than one
year

PHS High capacity; Centralized storage; Geographical
restrictions;

Can be used for offshore wind parks and
with a lower reservoir under sea level

Can become obsolete when
distributed storage preferred;Low cost per kWh; Minor needs for

power electronic converters; High investment cost of installation; Increasing public opposition due to
environmental damageLong lifetime; Environmental concerns

Reliable
BES Distributed storage; Good

configurability;
High investment costs; Short life span; Emerging technologies, most likely BES

will be a distributed system (many cars)
Constant development phase
complicates selection;

Fast response time; Temperature issues in cold climates
High energy efficiency and density Raw materials’ limits;

Environmental impacts;
Hydrogen Distributed storage; Other uses for

produced hydrogen;
Low efficiency; Market penetration; Perspective

nanotube storage media; Dedicated
converters

Maturing battery technologies;
High investment costs; Need for power
electronics and control; Need for stable
load

EMI issues related to the use of
power electronics convertersMinor environmental issues

Fig. 1. Comparison of different types of ESSs in terms of rated power, energy, and discharge duration [9].
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different types of batteries on the environment and public health.
Design features, advantages and disadvantages of batteries are pre-
sented; then, environmental and health impacts are reviewed and dis-
cussed from different aspects, including:

▪ The share of batteries in the use of raw materials and depletion of
natural resources;

▪ The role of batteries in environmental pollutants, greenhouse gas
(GHG) emissions, and harmful effects on public health during
mining, manufacturing, use, collection, transportation and storage;
and,

▪ Hazards and problems caused by disposal and recycling of batteries.

2. Different types of batteries

Batteries are categorized into the following groups [73]: (1) primary
batteries, (2) secondary batteries, (3) battery systems for grid-scale
energy provision (e.g., flow battery, sodium-sulphur battery), (4) fuel
cells, and (5) electrochemical capacitors (supercapacitor).

2.1. Primary batteries

Primary batteries for portable electric devices, typically not re-
charged after usage and usually not recycled, are convenient, simple,
and require little maintenance [73]. Primary batteries are further ca-
tegorized based on the type of electrolyte they use: aqueous and non-
aqueous [21]. These are commercially sold in sizes such as AA, AAA, C,

etc.; the most common being alkaline, zinc-carbon and lithium bat-
teries.

2.1.1. Zinc-carbon (Zn-C) battery
Zinc-carbon batteries accounted for 39% of the European market in

2004 [74], and their use is declining [73]. Also known as Leclanché
batteries, they have a low production and watt-hour cost, and come in a

Fig. 2. Comparison of different types of existing ESSs (commercial or near-
commercial) in terms of power output, module sizing, and discharge time
(adapted from [9,21]).

Fig. 3. Comparison of different types of ESSs in terms of cycle life and efficiency
[9].

Fig. 4. Comparison of different types of ESSs in terms of specific energy and specific power [18].

Fig. 5. Worldwide battery energy storage system installed capacity in 2016
[72].
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large variety of shapes, sizes, voltages, and capacities. Zn-C batteries
are reliable and have a moderate shelf life [75]. Zn-C battery dis-
advantages include low energy density, poor leakage resistance, and
voltage drop with discharge [73]. They have a carbon (C) cathode in
contact with a paste of MnO2 with an acid electrolyte, enclosed in a zinc
(Zn) case serving as the anode [76]. Large quantities of zinc and
manganese are contained in the batteries and they require proper
landfill disposal or metals recovery [77].

2.1.2. Alkaline battery
The primary battery market has shifted to the Zn/Alkaline/MnO2

battery (the ubiquitous “alkaline” cell). They outperform Zn-C batteries
by factors of × 2 to ×10 [73], provide good low temperature and high-
rate performance, have low cost and a good shelf life [75]. The alkaline
cell is similar to the Zn-C cell: it uses zinc and manganese dioxide as an
anode and cathode, but with a potassium hydroxide (KOH) electrolyte
[78]. Table 4 indicates the materials used and their average percentages
in alkaline batteries.

2.1.3. Lithium primary cells
Lithium cells have dominated high-performance primary battery

development since 1990 [73]. Lithium cells have high cell voltage, flat
discharge, long shelf life, wide operating temperature range, and good
power density [81]. Lithium batteries also contain lithium metal and
flammable solvents, and flammable hydrogen gas can be generated
when the lithium is in contact with water [82]. Another example of
lithium primary cells is the lithium-air battery that is under develop-
ment; it has 5–10 times more energy density compared to standard Li-
ion batteries [71].

2.2. Secondary batteries

Secondary batteries are rechargeable cells. They have a wide range
of day-to-day applications including car ignition and portable electronic
devices (e.g., cell phones, laptop computers), and are being developed
as a power source for electric and hybrid vehicles [73]. These batteries
have an increasing appeal in residential power storage, as more homes
use self-produced electricity [83]. Commercialisation of secondary cells
became possible through the development of electrodes that can un-
dergo many deep charge/discharge cycles [81]. Common rechargeable
batteries include lead-acid, lithium-ion, nickel-metal hydride, and
nickel-cadmium technologies, based on their electrode components
[84].

2.2.1. Lead-acid (Pb-A) batteries
Lead-acid batteries have the largest market share for rechargeable

batteries both in terms of sales value and MWh of production, mostly in
the automotive industry, with a secondary market for industrial use
such as standby power to telecommunications and data networks [21].
Pb-A batteries have low production cost, a wide size range, good high-
rate performance, good performance in varying temperatures, high
voltage, and good charge retention [21,73]. Disadvantages of Pb-A
batteries include relatively low cycle life, limited energy density, acid
stratification, acid leaks if breached, and difficulty in down-scaling

[73]. Lead production and use present well-known environmental
concerns, and recycling is required to reduce impacts [85]. The USA
Environmental Protection Agency claims that 90% recycling is achieved
for automotive Pb-A batteries [86]. Table 5 shows, as an example, the
materials used and their percentages in the production of a Pb-A bat-
tery.

2.2.2. Lithium-ion (Li-ion) batteries
Lithium batteries can provide a high storage efficiency of 83% [90]

and are the power sources of choice for sustainable transport [91]. Li-
ion batteries are ideal for small-scale electronics and are extensively
applied in renewable energy and micro-grid systems [72]. The ad-
vantages of Li-ion batteries include sealed cells that require no main-
tenance, long cycle life, wide temperature range of operation, rapid
charging, high charge/discharge efficiency, high energy density, and
ample design flexibility [73]. Flexibility of design involves selection of
the salts used as the electrolyte. Conventionally, Li-ion batteries use
lithium hexafluorophosphate (LiPF6) [92]. Batteries that use LiPF6 are
limited by thermal stability, sensitivity to moisture, and they break
down into toxic chemicals; alternative salts are being investigated to
curtail these drawbacks [93]. Solid-state electrolytes can also be im-
plemented to make Li-ion batteries more effective due to their thermal
and chemical stability [94], solid state electrolytes are considered ex-
pensive; however, advancements are being made to make them more
commercially viable [95]. Disadvantages of Li-ion batteries include a
high initial cost, significant charge/discharge randomness, frequent
charging needs, and insufficient cycle life [72].

The materials used and their percentages in Li-ion batteries differ
according to various factors such as size, application, and the type of
cathode consumed [96]. For example, the materials used and their
percentage in a typical Li-ion portable battery are lithium cobalt oxide
(27.5%), steel (20.2%), graphite (16%), polymer (14%), copper (9%),
aluminium (5.5%), nickel (4.3%), and electrolyte (3.5%) [96], which
are based on statistics obtained from several battery recycling compa-
nies. Table 6 illustrates the materials used and their percentages in
manufacturing of Li-ion batteries for a hybrid electric vehicle (HEV), a
plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle
(BEV).

2.2.3. Lithium-sulphur (Li-S) batteries
Lithium-sulphur batteries are considered promising for their high

theoretical capacity and low cost because of the abundance of sulphur
[99]. Real implementation of these cells is not as advanced as expected
despite a theoretical energy density three to five times higher than that
of Li-ion batteries [100]. Major limitations are capacity loss and low
coulombic efficiency due to polysulfide shuttling, low volumetric den-
sity, high internal resistance, self-discharge, and rapid capacity fading
[100,101]. Many of these drawbacks can be curtailed with innovative
design of the cells, which is why they are receiving so much attention.

2.2.4. Nickel-metal hydride (Ni-MH) batteries
Nickel-metal hydride batteries are used for power tools and hybrid

vehicle applications [87]. Ni-MH batteries were used in electric

Table 4
Materials used on average in composition of alkaline batteries [78–80].

Material Percentage of battery weight (%)

Manganese electrolytic 32–38
Graphite 3–5
Zinc 11–16
Steel 19–23
Potassium hydroxide (KOH) 5–9
Barium sulfate (BaSO4) < 5
Water, paper, plastic, other Balance

Table 5
Materials used in composition of a Pb-A battery [87–89].

Material Percentage of battery weight (%)

Lead 25
Lead oxides 35
Polypropylene 10
Sulfuric acid (H2SO4) 10
Water 16
Glassa 2
Other (e.g., antimony) 1

a In new batteries, plastic is used instead of glass or ceramic as separators.
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vehicles, and large vehicle manufacturing companies have also focused
on Ni-MH batteries [102]. The battery consists of a nickel hydroxyl
oxide cathode, a metal hydride anode, a KOH electrolyte, and a se-
parator [87]. Advantages of Ni-MH batteries are high energy density
and specific energy when compared with Pb-A and Ni-Cd, good tem-
perature and rate capability, good charge retention, long cycle life, long
shelf life, and rapid charging. Disadvantages of Ni-MH batteries include
a higher cost than Pb-A, lower specific energy and specific power, as
well as decreased performance at low temperatures [73].

2.2.5. Nickel-cadmium (Ni-Cd) batteries
Nickel-cadmium batteries are used for devices like phones, toys, and

hand tools [87]. Ni and Cd are used as electrodes, with the cadmium
electrode having a higher capacity [103]. Ni-Cd battery advantages
consist of long cycle life, durability, good charge retention, excellent
long-term storage, low maintenance, and flat discharge. The major
disadvantages are low energy density, high cost relative to Pb-A bat-
teries, and strong memory effects [73]. Cadmium is a highly toxic metal
which must be disposed properly, and the Cd levels in municipal solid
waste largely come from discarded Ni-Cd batteries [104].

2.2.6. Nickel-zinc (Ni-Zn) batteries
Nickel-zinc batteries are typically used for providing small-scale,

portable power at a high rate of discharge. Ni-Zn batteries do so at a
low-cost relative to Li-ion batteries, and can replace both Ni-Cd and Ni-
MH batteries for most applications [66]. These batteries are considered
effective because of their high specific power, high efficiency, low cost
and low impact on the environment [105]. However, there are draw-
backs to this configuration: disadvantages consist of zinc being a self-
corrosive material, Ni-Zn batteries are prone to dry out, and evidence
low discharge after a number of cycles [66,105].

2.3. Battery systems for grid-scale energy

Grid-scale storage requires development of specialized battery sys-
tems with a number of important characteristics. The grid-scale system
must be able to assist in meeting peak power demand, improve grid
stability, and provide large amounts of high-quality power quickly and
for a sustained period. There are two prominent types of grid-scale
battery technologies under development: flow batteries and sodium-
sulphur batteries [55]. Advanced Pb-A and Li-ion batteries may also be
adapted to grid-scale, but the power provided by these two approaches
can only meet energy demand at a lower scale, suitable only for local
use or in micro-grids.

2.3.1. Flow batteries
Flow batteries, also known as redox flow batteries (RFBs), induce a

chemical reaction in a reaction chamber with electrolytes stored in
external tanks [55]. RFB systems in which the electro-active materials
are dissolved into a liquid electrolyte [106] produce energy through
reduction and oxidation reactions occurring in separate half-cells. Re-
duction extracts electrons and ions from one electrolyte, oxidation re-
combines them in the other electrolyte. Both half-cells are connected to
an external storage tank [107]. Flow batteries have the ability to se-
parate power and energy; power is controlled by the cell stack, and
energy is stored in the separated reactants [53]. Advantages consist of
flexible design capability, controllable cell temperature, easy mon-
itoring, straightforward scaling, no self-discharge, quick response time,
and good stability after long periods of no discharge [107]. On the
negative side, RFBs have low power and energy density and require
management of pumps, flow and power. Vanadium is found in most
RFBs configurations; it is quite expensive and considered the main cost
driver of RFB systems [53].

2.3.2. Sodium-sulphur (Na-S) batteries
Sodium-sulphur batteries are high temperature batteries using li-

quid sodium and sulphur, potentially useful as ESSs at close to grid-
scale [108]. Na-S batteries might have become the energy source of
choice for electric vehicle applications except for the need to keep them
at their operating temperature of 300 °C [87]. Advantages to Na-S
batteries include low cost due to wide availability of materials, high
cycle life, high energy density, flexible operation, and insensitivity to
ambient conditions [73,109]. Disadvantages revolve around main-
taining the high temperature required for operation, including safety
issues related to the reactivity of the contents.

2.4. Fuel cells

Fuel cells continuously convert chemical energy of a fuel into
electrical energy by external provision of a fuel to a direct oxidation
substrate that generates power. Fuel cells are classified as direct systems
which directly use fuels such as hydrogen, and indirect systems that use
fossil fuels through a series of catalyzed and thermal steps [73]. The
most common approach is to generate methanol from methane (CH4 →
CH3OH) via the syngas reaction to generate liquid methanol, an easily
transported fuel. In the indirect fuel cell, the methanol is passed
through a reformer such that CH3OH → CO +2H2, and CO +H2O →
CO2 +H2, and the H2 generates electrical power as it is catalytically
oxidized to water. A fuel cell is similar to a battery in that it is com-
posed of an anode, cathode, and electrolyte membrane [9]. Advantages
of fuel cells include efficient conversion in the output power cycle,
reliability, flexible scaling, and minimal degradation [73,108]. The
disadvantages of fuel cells include expensive capital cost, the need for
fossil fuels (or other source of methanol), costly conversion reactions to
generate methanol, and minimal fuel infrastructure for fuel cell ve-
hicles.

2.5. Electrochemical capacitors

Electrochemical capacitors, also known as supercapacitors, can
manage high power output but in very short bursts (low overall energy
output) [110]. The device is comprised of two electrodes, a separator
and an electrolyte. Electrodes are polarized by an applied voltage, and
ions in the electrolyte form double-layers of opposite charge to the
electrolyte [111]. Advantages of electrochemical capacitors include low
charge time, high efficiency, very high cycle life, and high specific
power [110]. Disadvantages are low specific energy, short discharge
time, and linear decline of voltage [110,112,113].

Table 6
Materials used in making Li-ion batteries of HEV, PHEV and BEV [97,98].

Component Percentage of mass (%)

HEV PHEV BEV

Lithium manganese oxide (LiMn2O4) 27 27 33
Graphite/Carbon 12 12 15
Binder 2.1 2.0 2.5
Copper 13 15 11
Wrought aluminium 24 22 19
Lithium pentafluorophosphate (LiPF6) 1.5 1.6 1.8
Ethylene carbonate (EC) 4.4 4.7 5.3
Dimethyl carbonate (DMC) 4.4 4.7 5.3
Polypropylene 2.0 2.2 1.7
Polyethylene 0.26 0.40 0.29
Polyethylene terephthalate 2.2 1.6 1.2
Steel 2.8 1.8 1.4
Thermal insulation 0.43 0.33 0.34
Glycol 2.3 1.2 1.0
Electronic parts 1.5 0.9 1.1
Total battery mass (lb) 41 196 463
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3. Environmental and health impacts caused by battery use

Batteries may impact the environment during manufacturing, use,
storage, treatment, disposal and recycling. Due to their a vast range of
applications, a large number of batteries of different types and sizes are
produced globally, leading to different environmental and public health
issues. In the following subsections, different adverse influences and
hazards created by batteries are discussed.

3.1. Raw materials inputs

Battery manufacture requires large amounts of many different me-
tals and non-metals. The metals used include lead (Pb), lithium (Li),
nickel (Ni), cobalt (Co), zinc (Zn), manganese (Mn), magnesium (Mg),
mercury (Hg), silver (Ag), cadmium (Cd), vanadium (V), potassium (K),
titanium (Ti), chromium (Cr), sodium (Na), tin (Sn), aluminium (Al),
iron (Fe), copper (Cu), indium (In), silicon (Si), antimony (Sb), lan-
thanum (La), and cerium (Ce) [66,114]. The non-metals used include
carbon or graphite (C), fluorine (F), chlorine (Cl), bromine (Br), sulphur
(S), and germanium (Ge) [66,114]. Increasing battery manufacture
affects natural resource access and economics because of the geo-
graphical location of metal sources (often in unstable or controlled
economies) and the depletion of the easiest sources first. In addition,
some of these materials are precious (Ag) and used as currency, and
others are expensive (In and Hg) or rare (La and Ce). To provide the
increases needed in supplies of metals such as lead, zinc, lithium, alu-
minium, copper, etc., additional quantities of minerals from existing
and new discoveries must be generated [115]. The mining industry it-
self has environmental and social issues of substantial magnitude,
especially in less-developed countries with lax or corrupt regulatory
oversight, and these may increase if the demand forces prices upward.
In the cost context, examining public commodity indices as of mid-
2018, Co had increased in price three-fold in the last two years, Li
prices increased four-fold since 2015, and rare earth stock market in-
dices have increased dramatically (China dominated rare earth pro-
duction at 80% of global total in 2016).

About 85% of worldwide lead consumption is used for the pro-
duction of Pb-A batteries [21,116,117]. Fig. 6 shows the rate of lead
production over time in the world. Sun et al. [118] reported that the
total global consumption of lithium (Fig. 7) in making batteries was
approximately 35% in 2015, reaching 46% in 2017 [119], driven by
battery demand. The worldwide cobalt demand for manufacturing
batteries is ~50% of supply [120], as indicated in Fig. 8. According to
reports by DS [121], EC [114] and Labie et al. [122], around 10% of
global production of graphite in 2010 was for batteries.

Nickel use in batteries accounts for only 3% of its total world pro-
duction (Fig. 9) [128]. About 5% of global consumption of mercury is
for batteries [129], and this is trending downward because of tech-
nology changes and toxicity concerns [130]. Batteries account for

~75% of global Cd production [131]. Ni-MH batteries account for
~10% and ~6% of the global consumption of La and Ce, respectively,
and ~5% of indium use between 2010 and 2017 was for alkaline bat-
teries [114,121,132]. The worldwide demand of Mn for batteries pro-
duction has been reported to be ~2% [114]. As illustrated in Fig. 10,
the global use of refined tin in Pb-A batteries accounted for ~8% of its
total world production in 2016 [133]. According to Chegwidden [134]
and Dupont et al. [135], the antimony consumption in Pb-A batteries’
production was ~27% in the world in 2010.

Fig. 11 shows the historical lead prices from 1989 to the end of
2018; Pb prices generally increase over time and greater fluctuations in
price are evident in recent years. Fig. 12 indicates cobalt prices from
2005 to the end of 2018. Al-Thyabat et al. [137], Ruffino et al. [138],
Rydh and Svärd [139] and Song et al. [140] all report that the recent
increases in the prices of raw minerals led to greater recycling of used
batteries and the recovery of metals (e.g., lead, cobalt, nickel and
copper).

3.2. Harmful effects and environmental pollutions caused by using batteries

Some metals and non-metals involved in battery manufacturing can
threaten human health via different forms of exposure such as inhala-
tion, skin or eye contact, ingestion and injection. For example, humans
generally absorb Pb through ingestion, inhalation and dermal absorp-
tion [143–145], Cd by ingestion and inhalation [130,146,147], and Hg
through inhalation, ingestion and skin contact [148,149]. Mousavi
et al. [150] reported that Pb, Cd, Hg, As, and Cr have noxious effects on
human health, and heavy metals in general present risks for public
health and the environment [130,151,152].

Metal toxicity is a function of factors including the pathway, period
and frequency of exposure, absorbed dose, and chemical species; it also
depends on subject age, gender, genetics, and nutritional status
[130,147]. In 2016, statistics showed that Pb exposure caused the death
of 495,550 people and losses of 9.3 million disability-adjusted life years
from long-term influences on health, especially on individuals from
low- and middle-income countries [153]. Metals and metal compounds
enter soil, groundwater and surface waters through many different
pathways during mining and industrial activities. Landfills and tailings
ponds affect water, and dust or evaporates (e.g., fumes from burning
wastes during recycling) from various stages in transportation, pro-
cessing and recycling enter the atmosphere. Wastes from battery
manufacture and recycling are a crucial and growing challenge for
public health owing to their toxicity, abundance and durability in the
environment, as well as the huge predicted growth in the manufacture
of batteries [154].

In different battery recycling stages, metals, non-metals, electro-
lytes, hard rubbers (or ebonite) and plastics may form part of solid
waste, wastewater, GHG emissions, particulates emissions, and toxic
gases [155]. Lead fumes and particles can be released into the air
during recycling processes used for Pb-A batteries [155,156]. Li-ion
batteries produce around 70 kg CO2 per kW h [157], so CO2 emissions
along various mining, transportation, manufacturing processes and re-
cycling pathways must be included in any general environmental as-
sessment of batteries. Table 7 shows the effects of different types of
batteries on the environment, and risks caused by various kinds of
batteries are listed in Table 8.

Pb-A battery use is growing rapidly in China owing to different
applications such as electric bicycles, automotive use, and local pho-
tovoltaic energy storage industries [161]. For the foreseeable future,
China will continue to lead the world’s production, refining and use of
both lead and Pb-A batteries, and contamination caused by lead and
human exposure in China are large challenges for public health, espe-
cially for children’s health. Millions of Chinese children are exposed to
lead poisoning, so that 24% of children under study were lead poisoned
with levels of more than 100 μg/L between 2001 and 2007 [161]. Even
at levels of 20 μg/L lead has deleterious effects on children’s health, andFig. 6. World production of lead [115,123,124].
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100 μg/L is considered severe [155].
Sullivan and Gaines [87] published a comprehensive review of

cradle-to-gate (GTG) life cycle inventories of different batteries in-
cluding Pb-A, Ni-Cd, Ni-MH, Na-S and Li-ion. They analyzed emissions
created during materials production, battery manufacturing and as-
sembly, as well as associated with recycling of batteries and battery
materials. These emissions include CO2, criteria contaminants (owing to
combustion), and process-specific emissions (e.g., heavy metals), both
to air and water as well as resident in solid waste. Tables 9 and 10 show
the emissions data obtained from various references for different

Fig. 7. Global production of lithium (a) by country and mineral type [125,126] and (b) generally around the world [127].

Fig. 8. Global demand for cobalt [120].

Fig. 9. Different usages of nickel [136].

Fig. 10. Worldwide use of tin according to its applications [133].

Fig. 11. Lead price changes versus time [141].

Fig. 12. Cobalt price changes versus time [142].
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batteries. Note that the emissions data related to the recycling process
was restricted (Table 10).

According to Tables 9 and 10,

▪ The GHG emissions per kg of battery are generally a bit higher than
direct CO2 emissions, and Pb-A has the lowest quantity of CO2

emissions (Fig. 13);
▪ The average emissions for each battery are lower than 30 g/kg of
battery for all kinds of emissions, excluding SOx emissions for Ni-MH
and Ni-Cd batteries (Fig. 14). Also, the relative change in the
averages among batteries for each emission is approximately the
same; and,

▪ In general, Pb-A batteries have the lowest amount of criteria con-
taminant emissions among all batteries.

Because the quantity of Li-ion batteries used in light vehicles is
growing, interest in energy consumption and GHG emissions from their
production is of interest [169–185]. The findings obtained from these
studies differ in quality in areas such as transparency, assumptions
used, and depth of review, so the reliability of the findings is varied
[184]. It is suggested that these issues be resolved as society moves
toward larger use of energy storage and rapid growth in battery im-
plementation in E-vehicles and grids. Fig. 15 displays the review find-
ings by Romare and Dahllöf [184] on the GHG emissions caused by Li-

ion batteries production; T-D and B-U refer to top-down and bottom-up
approaches for manufacturing, respectively. The data obtained from T-
D approaches is likely more complete and accurate since the T-D studies
started with production data. They also reported that GHG emissions
occur during recycling of Li-ion batteries, although the rate of recycling
of Li-ion batteries is currently very low. They conclude that:

▪ Energy consumption for current battery production is from 350 to
650MJ/kW h.

▪ Cell production requires a lot of energy (mainly electricity at this
stage), and significant GHG emissions are generated.

▪ Past studies indicate GHG emissions between 120 and 250 kg CO2-

eq/kW h.

Li-ion and Ni-MH batteries are the highest rank CO2-eq emissions
producers (Table 11) [70]. It should be noted that lithium batteries are
capable of creating a fire if they are exposed to humidity for a duration
sufficient to lead to the corrosion of cells [74]. For two main reasons, it
is difficult to compare the lithium primary batteries with alkaline bat-
teries in the market [158,186]: this difficulty is associated with (1) very
high costs because of production processes, materials consumed in
making them, and auxiliary systems needed for their functioning, and
(2) the cost of safety issues, although both batteries have similar life
spans. Aifantis et al. [186] reported that the production of lithium
batteries and cells is a business with particularly advanced technology.
For example, assembling these batteries and cells must be carried out in
places with a relative humidity (RH) of less than 3% due to safety
concerns, although a RH value equal to or lower than 1% has been
recommended.

Corrosive battery electrolytes can leak after breaking during sto-
rage, use or transportation [187]. Also, the electrolyte contains dis-
solved metals like lead which can become resident in water or soil in
various chemical forms that are mobile. Because of the presence of
various metals (especially heavy metals) and electrolytes (e.g., LiPF6 in
Li-ion batteries, sulfuric acid (H2SO4) in Pb-A batteries), wastewater
generated during different processes (e.g., manufacturing, treatment,
recycling) can be dangerous. If wastewater penetrates into the ground
and flows into surface waters, it can create many problems for human
health, so capture and treatment of contaminated wastewater is very
important and vital.

3.3. Disposal and recycling of batteries

Vast quantities of batteries in different forms, sizes and applications
are produced; in 2000, worldwide demand for batteries was around $41
billion, including $16.2 billion primary and $24.9 billion secondary
[188,189], and this demand reached $65 billion in 2008 [190], then
$71 billion in 2010 [188,189], with rapid growth envisioned
[186,191]. Alkaline and Pb-A batteries accounted for over 50% of the
primary and secondary batteries market, respectively, in 2010 [186].
Alkaline batteries in the US account for ~80% of portable batteries
produced and the total annual production of these batteries is more
than 10 billion units [192]. Worldwide battery sales in 2019 are pre-
dicted to reach $120 billion, increasing at a rate of 7.7% annually
[193,194]. Fig. 16 shows the annual sales of plug-in vehicles worldwide
from 2011 to 2017. Electric vehicles use different forms and sizes of
batteries [195]. As illustrated in this figure, there is a considerable and
rapid growth in the sale of plug-in vehicles between 2011 and 2017.

Nearly all batteries pose threats to the environment and public
health if not disposed of appropriately and safely; however, some types
are more dangerous than others due to metal toxicity. Bernardes et al.
[74] stated that there are various options for batteries’ end-of-life, in-
cluding: stabilization, landfill, incineration and recycling. Large
amounts of alkaline and Zn-C batteries are landfilled or incinerated,
instead of recycled [196,197]; in China most spent batteries (excluding
Pb-A batteries) are treated like domestic wastes, disposed of in landfills

Table 7
Environmental impacts of different types of batteries [157-159].

Battery type Environmental impact

Ni–MH (established) Nickel not green (difficult extraction/
unsustainable), toxic. Not rare but limited
Recyclable

Pb-A (established) High-temperature cyclability limited
Lead is toxic, but recycling is efficient to 95%

Li–ion (established) Depletable elements (cobalt) in most applications;
replacements manganese and iron are green
(abundant and sustainable)
Lithium chemistry relatively green (abundant but
the chemistry needs to be improved)
Recycling feasible but at an extra energy cost

Zn–air (established) Mostly primary or mechanically rechargeable
Zinc smelting not green, especially if primary
Easily recyclable

Li–organic (future) Rechargeable
Excellent carbon footprint
Renewable electrodes
Easy recycling

Li–air (future) Rechargeability to be proven
Excellent carbon footprint
Renewable electrodes
Easy recycling

Magnesium–sulphur (future) Magnesium and sulphur are green
Recyclable
Small carbon footprint

Al–CFx (future) Aluminium and fluorine are “green” but their
industries are not
Recyclable

Proton battery (future) Green, biodegradable

Table 8
Risks of batteries by type [157,158,160].

Battery Risk

Alkaline Benign but corrosive electrolyte
Pb-A Heavy metals give long-term environmental risk, corrosive

electrolyte can be liquid
Ni–Cd Toxicity
Ni–MH Mostly harmless, flammable electrodes (self combust when

exposed to air) if opened
Li–ion Internal short circuit, safety issues, medium fire risk
Lithium primary Safety issues, highest risk of fire if not handled correctly
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or incinerators [140]; in the United States, most alkaline batteries are
transferred to landfills [192]; in the EU, a vast amount of batteries is
disposed of instead of being recycled [70]. Recent rates of used battery
recycling in China are lower than 2% as the collection system for bat-
teries is weak [198].

As mentioned previously, batteries are produced from various ma-
terials such as metals, non-metals, plastics, paper (or paperboard), and
electrolytes [69,199,200] (see Tables 4–6), and how to collect, treat,
recycle and bury them is environmentally important. Used battery
disposal is of general concern because of the hazardous nature of the
metallic waste [201], which is costly to dispose safely. According to the
US Environmental Protection Act in 1995 (40 CFR 273), batteries were
categorized as universal and hazardous waste so that storage, recycling,
treatment and disposal of them were regulated [202]. Various jur-
isdictions have developed regulations and product stewardship pro-
grams to control and minimize the environmental influences of bat-
teries [193].

To meet more stringent environmental regulations, better recycling
procedures and technologies have been established [203], and most
battery materials can be recycled, albeit not cheaply, using chemical
and mechanical techniques [204] for re-use in continued battery pro-
duction and other purposes. Recycling of used batteries reduces

production costs and raw materials consumption, mitigating environ-
mental impacts [74,78,197,203,205], although the costs for the com-
plex recycling remains high. Fig. 17 shows, as an example, Zn and Mn
recycling from alkaline and Zn-C batteries.

The major challenge for recycling is collection, which depends on
the contribution and support of the public, government, business and
other social organizations [206]. For batteries using cadmium (e.g., Ni-

Table 9
Air, water and solid wastes for CTG battery manufacture (g/kg of battery, unless differently stated) [87].

VOC CO NOx PM SOx CH4 N2O CO2 kg/kg Water Air Reference
(mg/kg)

Ni-MH 0.11 0.34 1.31 0.79 1.06 1.33 0.04 1.02 60 g Al, Ni, Co, etc., to air/water/solid [162]a

1.3 4.5 27 2.8 263 22.7 0.19 14.8 18b – heavy metals 100b – heavy metals [163]
19 14 15 [164]

0.7 2.1 8.7 14.0 19.2 11.1 0.11 8.3 [165]
0.9 3.9 11.4 18.9 20.5 15.3 0.1 10.3 [166]c

1.8 7.5 21.8 36.1 38.9 29.3 0.3 19.5 [166]c

Ave. 1.2 4.5 17.6 18.0 71.1 19.6 0.2 13.6
Pb–A 0.11 0.31 1.13 1.67 2.29 1.64 0.02 1.1 4.8 – Pb 1.2 – Pb [162]a

2.2 1.3 7.9 0.8 10.3 0.002 0.006 1.1 97 – heavy metals 118 – heavy metals [167]
5.8 5.3 5.1 [164]

0.57 1.65 6.8 11.0 14.9 8.7 0.09 6.4 [165]
0.2 0.6 1.5 1.3 2.0 3.0 0.02 1.4 [168]
0.2 0.7 2.1 3.5 3.7 2.9 0.0 1.9 [166]c

0.3 1.2 3.5 5.7 0.6 4.6 0.0 3.1 [166]c

Ave. 0.7 1.1 4.6 4.5 7.0 3.8 0.0 3.2
Ni–Cd 60 – Cd, Co, Ni 40 – Cd, Co, Ni [162]a

5.9 5.4 40 5.2 265 0.001 0.015 6.2 30 – heavy metals 740 – heavy metals [167]
0.6 1.9 8.6 11.3 16.9 9.5 0.1 7.3 [164]
0.7 2.8 8.1 13.4 14.5 10.9 0.1 7.3 [166]c

0.9 3.8 11.1 18.3 19.8 14.9 0.1 9.9 [166]c

Ave. 2.0 3.5 17.0 12.1 79.0 8.8 0.1 7.7
Na–S 1.67 5.4 20.5 25.6 38.0 27.3 0.2 18.2 [168]

1.1 4.4 13.0 21.4 23.4 17.3 0.2 11.6 [166]c

1.2 4.9 14.6 24.2 26.5 19.6 0.2 13.2 [166]c

Ave. 1.3 4.9 16.0 23.7 29.3 21.4 0.2 14.3
Li–ion 22.5 17.5 18.2 [164]

0.6 1.8 7.6 17.3 16.7 9.7 0.1 7.2 [165]
1.1 4.3 13.3 21.9 24.9 17.6 0.2 12.1 [166]c

1.7 6.4 20.0 32.9 37.4 26.5 0.2 18.1 [166]c

Ave. 0.9 3.0 14.5 19.6 19.7 13.7 0.1 12.5

a Does not contain battery production.
b Solely from Ni production, assumed battery is 25% Ni.
c Used the average of their total energy amounts.

Table 10
Emissions to air, water and solids caused by battery recycling (g/kg of battery, unless differently stated) [87].

VOC CO NOx PM SOx CH4 N2O CO2 (kg/kg) Water Air Reference
(mg/kg)

Ni–MH 0.107 0.386 1.390 2.047 2.786 1.619 0.016 1.234 0.24 kg slag and 30 g toxics – solid [162]
Pb–A 0.425 1.762 1.966 0.520 0.522 0.768 0.025 0.604 < 0.1 Sb, Hg, Ni, Pb, etc. 5.0 – Pb, Cd, Cu, Zn, As [162]
Ni–Cd 0.111 0.429 3.1 0.386 2.71 0.492 0.014 0.378 < 0.1– Cd, Ni 1.0 – Cd, Ni [162]

Fig. 13. Mean CTG CO2 emissions with± one standard deviation to produce a
kg of different battery [87].
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Cd batteries), collecting and recycling is deemed vital because Cd can
be highly toxic [131]. To diminish exposure and environmental risk,
recycling must be carried out at appropriate facilities that are ade-
quately equipped and regulated, and recycling in crowded urban re-
gions is to be discouraged [207]. Trained staff, necessary engineering
controls, preparation and use of protective equipment, and environ-
mental and occupational monitoring are vital for recycling plants be-
cause of the health risks and broader pollution potential [155,208].

Lead (Pb) forms approximately 65% of the mass of lead-based bat-
teries and the great majority is recycled [21,160], accounting for ~60%
of total global lead production. Around 99% of lead-based batteries in
the EU and the US are recycled, and 95–99% overall in the OEDC.
Nevertheless, in countries with less advanced technologies and lax
regulatory enforcement, lead recycling is a significant source of en-
vironmental pollution leading to human exposure
[87,155,161,209,210] since recycling is typically performed without
the essential procedures and technologies to control emissions. Fur-
thermore, the level of regulatory enforcement and available industry

infrastructure to recycle lead in developing countries remains weak,
and in the absence of enforced standards and employee protection
(Fig. 18), even industrial-scale recycling can lead to substantial en-
vironmental pollutant and human exposure [208].

The recycling of Pb-A batteries is performed in several stages
[155,211]: (a) collection and transportation of the batteries, (b) se-
paration of their component parts through breaking them, (c) smelting
and refining of the lead components, (d) washing and shredding or
melting of the plastic components, (e) purification and treatment of the
H2SO4 electrolyte, and (f) treatment and disposal of the remaining
waste. Many researchers have reported the details of recycling and
disposal of Pb-A batteries [21,87,155,211–217], and Fig. 19 shows the
general recycling process. According to May et al. [21], around 650 kg
of Pb will be recovered from every tonne of Pb-A scrap batteries. In
addition, different metals such as antimony, arsenic, tin, copper, silver,
barium and cadmium can be recovered from the recycling process
[21,87,155].

At present, the recycling of Li-ion batteries is limited [96,184,218]
(lower than 3% [219,220]), but with increasing demand for electric
vehicles and restricted virgin materials access [218,219,221], recycling
of these types of batteries has become a vital issue for the near future.
Gaines [222] stated that no regulations currently exist to guide the
recycling of Li-ion batteries at a large scale. Several researchers have
described various processes for recycling different types of Li-ion bat-
teries [21,96,97,219,221–225].

Three general methods exist to recycle Li-ion batteries [96,97]:
mechanical, pyrometallurgical and hydrometallurgical processes. These
methods are mostly intended to recover different materials (lithium,
copper, cobalt, nickel, iron, aluminium and manganese). Some pro-
cesses are currently under development to better recycle these types of
batteries [97,223], such as the Beijing Institute of Technology (BIT)
recycling process (Fig. 20) [226]. The level of toxicity of substances
used in Li-ion batteries is less than other types of batteries [227], so in
some countries, they are disposed in landfills [96].

4. Summary and conclusion

Battery energy storage is reviewed from a variety of aspects such as
specifications, advantages, limitations, and environmental concerns;
however, the principal focus of this review is the environmental im-
pacts of batteries on people and the planet. Batteries are the most
common and efficient storage method for all small-scale power needs,
and vast numbers of batteries of different types and sizes are manu-
factured annually; this will grow as population and demand for portable

Fig. 14. Mean criteria contaminant emissions (g) per kg of battery for different
batteries [87].

Fig. 15. Computed GHG emissions for various life cycle assessment (LCA) of Li-
ion batteries for the chemistries NMC, NMC/LMO, LFP and LMO. In this figure,
NMC refers to lithium manganese cobalt oxide, LFP refers to lithium iron
phosphate, and LMO refers to lithium manganese oxide [184].

Table 11
Specific effect per kg of battery production [70].

Climate impact (kg CO2-eq)

Pb-A 0.9
Li-ion (NMP solvent) 12.5
Li-ion (water solvent) 4.4
Ni-Cd 2.1
Ni-MH 5.3
Na-S 1.2

Fig. 16. Annual sales of plug-in vehicles around the world as well as in China,
the US and Europe [195].
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electronic devices increase (e.g., laptops and cellphones), as the vehicle
fleet becomes electrified, and as other uses such as remote sensor arrays
and grid-scale energy storage are envisioned and implemented. Concern
for environmental impacts and personal (and population) health is in-
creasing worldwide, and more attention and risk quantification are
needed, especially on health impacts and the cost of externalities (e.g.,
the impact of secondary pollution associated with recycling or landfill
placement).

A wide variety of raw materials, including metals and non-metals, is
needed for the large numbers of batteries manufactured: global con-
sumption for making batteries accounts for large fractions of produced
lead (85%), cadmium (75%), cobalt (50%), lithium (46%), antimony
(27%), lanthanum (10%), and graphite (10%). With sharply increasing
battery production for E-vehicles, microgrid energy storage, and larger-
scale grid applications, resource depletion pressures and price rises
seem certain, particularly for those metals that are precious (Ag), ex-
pensive (In), and rare (e.g., La and Ce).

Batteries generate environmental pollutants, including hazardous
waste, GHG emissions, and toxic fumes, in different ways during
manufacturing, use, transportation, collection, storage, treatment, dis-
posal and recycling. The share of batteries’ manufacturing processes in
causing environmental contaminants (especially CO2 emissions) is

significant because of the high energy consumption, compared to other
energy storage processes. The heavy metals used in making batteries
(e.g., Pb, Cd, Hg, As, Cr) are harmful to human health if exposure ex-
ceeds certain limits, and exposure affects developing children more
than adults.

Collection, recycling and disposal of small batteries is a challenge:
most batteries are currently sent to landfills at the end of useful life

Fig. 17. Recycling of Zn and Mn from used alkaline and Zn-C batteries [201].

Fig. 18. Non-regulated recycling process for spent Pb-A batteries [155].

Fig. 19. Schematic diagram of the general recycling process of used Pb-A bat-
teries (adapted from [212,213]).
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instead of collection and recycling. Recycling waste batteries and re-
covery of metals is costly, but will be increasingly necessary as use rises.
Lead-acid vehicle batteries are almost entirely recycled in developed
countries, but lax controls and enforcement and inadequate facilities in
many places cause major environmental and health problems. Solutions
to these problems are obvious, but difficult to implement and costly in
less developed economies.

It is reasonable to suppose that large battery use will increase ra-
pidly in the next generation, and grid-scale battery energy storage
(> 50MW) is being considered, using purpose-built and distributed
sources (plugged-in vehicles). It is strongly recommend that energy
storage systems be far more rigorously analyzed in terms of their full
life-cycle impact. For example, the health and environmental impacts of
compressed air and pumped hydro energy storage at the grid-scale are
almost trivial compared to batteries, thus these solutions are to be en-
couraged whenever appropriate. A combination of different types of
ESSs will be the most effective and appropriate approach to increase
efficiency and sustainability while decreasing energy losses, costs, en-
vironmental impacts and health concerns.
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