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ABSTRACT: We develop a unit commitment and economic dispatch model to
estimate the operation costs and the air emissions externality costs attributable to
new electric vehicle electricity demand under controlled vs uncontrolled charging
schemes. We focus our analysis on the PJM Interconnection and use scenarios
that characterize (1) the most recent power plant fleet for which sufficient data
are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming
plant retirements, and (3) the 2018 fleet with increased wind capacity. We find
that controlled electric vehicle charging can reduce associated generation costs by
23%−34% in part by shifting loads to lower-cost, higher-emitting coal plants.
This shift results in increased externality costs of health and environmental
damages from increased air pollution. On balance, we find that controlled
charging of electric vehicles produces negative net social benefits in the recent
PJM grid but could have positive net social benefits in a future grid with sufficient
coal retirements and wind penetration.

1. INTRODUCTION

U.S. federal and state policies promote the adoption of electric
vehicles as a means to transition to a cleaner transportation
system. Passenger vehicles account for 17% of United States
greenhouse gas (GHG) emissions1 and also produce other
pollutants harmful to human health and the environment. For
example, particulate matter emissions, especially in urban areas,
contribute to respiratory illnesses like asthma, pneumonia, and
bronchitis.2 Although electric vehicles have lower tailpipe
emissions than gasoline powered vehicles, the changes in
emissions associated with vehicle electrification on a life cycle
basis will depend on the emissions associated with the
operations of the power plants used to charge the battery.
Power plants currently produce 71% of national SO2 emissions,
1% of primary particulate matter emissions, and 14% of NOX
emissions,4 which cause their own set of health and
environmental problems. SO2 from power plants is a particular
concern, as SO2 is a precursor of particulate matter.3 Power
generation also accounts for over 40% of GHG emissions.5

Electric vehicle charging may affect these trends. Finally, the
additional electricity demand from charging vehicles will affect
the operations of the power system and potentially affect the
costs of electricity. In this study, we evaluate the economic,
environmental, and health costs and benefits of controlled
electric vehicle charging in the PJM interconnection. We aim to
help inform policymakers and electric power grid operators
about the conditions under which encouraging controlled
charging will be beneficial for society, as well as to identify

which factors are most important for future modeling of the
implications of vehicle-to-grid and controlled electric vehicle
charging.
Several previous studies have evaluated the emission benefits

of controlled vs uncontrolled electric vehicle charging. Table 1
provides a summary of this literature. One of these studies,
Choi et. al,6 examined life cycle emissions, whereas Lund and
Kempton,7 McCarthy and Yang,8 and Peterson et al.9 focus
only on emissions attributed to charging. None of these studies
have included both a detailed model of the power grid with
power plant operating constraints and a consideration of social
costs of criteria air pollutants and greenhouse gas emissions.
We build on previous work and provide new insights about the
costs and benefits of vehicle electrification under controlled vs
uncontrolled charging schemes. Unlike previous work, we
combine detailed modeling of the operating constraints of the
electric grid with an estimate of the environmental and health
damages from the additional emission due to vehicle charging,
in addition to evaluating the change in operating costs. We base
our model on the PJM power grid in the Eastern United States
(ignoring interregional trade) and include three power grid
scenarios for this system to evaluate the near-term effects of
controlled charging. The first grid scenario is based on the most
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recent available characteristics of the PJM system; in our
second grid scenario, we develop a hypothetical power plant
fleet for 2018 that accounts for the retirement of coal power
plants; and our third scenario extends the 2018 system to
include 20% wind penetration.

2. MATERIALS AND METHODS
Scenarios. We use five different scenarios to investigate

how different factors will affect emissions and the costs of
charging:

1. Base Case: In this scenario, we assume an electric vehicle
fleet based on the PHEV35 model in GREET10 (similar
to the Chevy Volt) and a fleet of power plants
representing the PJM system in 2010.

2. Small Battery: For this scenario, we modify the base case
so that the vehicle fleet is based on the Toyota Plug-in
Prius.

3. Large Battery: For this scenario, we modify the base case
so that the vehicle fleet is based on the Tesla Model S.

4. Future: For this scenario, we modify the base case to
model a power plant fleet in 2018 by accounting for
planned new power plant construction, plant retirement,
and updated emissions rates and marginal generation
costs.

5. High Wind Future: In this scenario, we modify the future
case to add wind plants sufficient to produce 20% of
generation.

Finally, for each scenario, we evaluate uncontrolled electric
vehicle charging, in which drivers plug in their vehicles
immediately after the last trip of the day, and controlled
charging, in which we optimize the vehicle charging to
minimize the cost of generating electricity. In the controlled
charging scenario, vehicle charging can occur any time between
the last trip of the day and the first trip of the following day, so
long as the battery is fully charged for the next trip.
When choosing the scenarios to model, we consider the

tradeoff between modeling a future year when electric vehicles
are expected to make up a larger portion of the vehicle fleet vs
years in the recent past for which we can more confidently
model the power grid. We choose 2010 as the base case, as it is
the latest year for which complete data on power plant costs,
emission rates, and operation, wind generation, load, and
transmission constraints are available. We choose 2018 for the
future grid scenarios because of an available EPA dataset
predicting the characteristics of the power plant fleet (including
operating costs) for that year. The three different battery sizes

in the analysis span the range of sizes seen in popular, existing
electric vehicles. We use the a Chevy Volt sized vehicle as the
base case, as it is an intermediate range plug-in hybrid, midsized
vehicle capable of driving the currently observed daily driving
profiles without concerns about vehicle range.

Optimization of the Power System. To determine the
effects of electric vehicles on the operations of the power
system, we use the PJM Hourly Open-source Reduced-form
Unit-commitment Model (PHORUM), an open-source unit
commitment and economic dispatch model developed at
Carnegie Mellon University.11,12 This model uses mixed integer
linear programming to minimize the costs of operating the
power plants in the fleet while satisfying load, operating
constraints of the power plants, and transmission and reserve
constraints of the system. We modify PHORUM to incorporate
plug-in electric vehicle charging, both controlled and
uncontrolled, adding equations for battery constraints and
charging requirements. The Supporting Information includes
the complete set of equations in the model. The model
optimizes each day using a 48 h window, and then steps
forward 24 h, optimizes the following 48 h window, and
repeats. The operating constraints of the power plants in the
model include minimum generation levels, ramp rate
constraints, and minimum on and off times. To account for
outages, we derated the capacity of the power plants using the
equivalent availability factor for each plant type and month of
the year, as in ref 11. The model represents transmission
constraints as hourly maximum power levels that can be
transferred among five different transmission-constrained
regions in PJM. The Supporting Information includes the
description of the full model.
The model uses simplified reserve constraints. Most unit

commitment models require that spinning reserves be within
the ramping capability of active power plants but never call on
those reserves. In PHORUM, instead of co-optimizing an
energy and reserve market, as is actually done in PJM, the total
load includes the reserve requirement, as though the system
always uses the operating reserves. This simplification decreases
the run time by an order of magnitude, allowing for the
examination of a wide range of scenarios using data for the
entire year. The additional generation due to reserves is
constant between scenarios, because n-1 security for the power
plants (where the system maintains sufficient reserves to meet
load if the largest power plant in each region were to go offline)
determines this amount for each transmission-constrained
region. We expect the emissions from this extra generation to
also be similar across scenarios and so would largely cancel out

Table 1. Previous Literature Comparing the Effect of Controlled vs Uncontrolled Plug-in Electric Vehicle Charging on
Emissions

author year power system scope power system model
high wind
scenario? emissions considered

calculation of
damages?

Lund and
Kempton7

2008 Denmark charging
emissions

supply curve with min gen yes CO2 no

McCarthy and
Yanga8

2010 California charging
emissions

supply curve no CO2 no

Peterson et al.9 2011 PJM and
NYISO

charging
emissions

supply curve no CO2, SO2, NOX no

Choi et. al6 2013 Eastern
Interconnect

life cycle
emissions

unit commitment and capacity
expansion

yes CO2 no

this paper PJM charging
emissions

unit commitment yes CO2, SO2, PM2.5, NH3,
NOX, VOCs

yes

aThis work does not explicitly compare controlled and uncontrolled charging, but it does examine the difference in emissions for charging off-peak vs
throughout the day.
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in the comparison. Additionally, the potential error introduced
is small: adding the reserves as load increases locational
marginal prices (LMPs) by less than 5%, and the error
compared to historical 2010 LMP’s is lower than simply
omitting the reserves.11

Data. Power Plant Fleet. The power system used in this
study is based on PJM in 2010. PJM is an interesting power
system to examine, as it is the largest independent system
operator in the United States by population and has a large
installed coal capacity. The data for the power plants comes
largely from the NEEDS dataset (v.4.10)13 but also includes
data on power plant operating parameters from other sources
like the Energy Information Administration (EIA) and PJM
reports.11 To include transmission constraints, we rely on
PHORUM, which uses publically available PJM data. This
model has been validated to simulate PJM prices reasonably
well.11 It divides the PJM system into five transmission-
constrained regions connected by six transmission interfaces, as
shown in Figure 1. Each transmission interface consists of

several actual transmission lines PJM identified as causing about
half of the congestion costs.14 Transmission constraints can
affect the value of controlled charging and the resulting
emissions. For instance, reducing the vehicle charge rate in
population centers on the East Coast may ease congestion at
peak load times, allowing the use of cheaper power plants, with
different emission profiles, for charging the vehicles.
For scenarios 1−3, we use power plant emission rates from

the 2010 eGRID dataset for CO2, SOX, and NO2 emissions
15

and the 2005 NEI dataset for VOCs and PM 2.5 emissions16

divided by the generation from eGRID 2005 (2005 is the most
recent year for which both NEI and eGRID data could be
matched, allowing for the calculation of an emission rate). For
plants that were not present in the 2005 datasets, we assumed
emissions rates were equal to the capacity-weighted average for
each plant type. The majority of plants missing in the 2005
datasets were natural gas plants. For the future grid scenarios,
we update the dataset with power plant additions, retirements,
emission rates, and marginal costs from the EPA Parsed Results
for 2018.17 These results come from the EPA’s Integrated
Planning Model base case, which accounts for current
regulatory constraints, including the Clean Air Interstate Rule
(CAIR) and the Mercury Air Toxics Standards (MATS). We
do not include any changes from the proposed existing source
CO2 rule, as it is still unclear what the final implementation will
look like and what will be its exact effects. The future scenarios

do not take into account any transmission expansion, but we do
examine a sensitivity case with no transmission constraints.
To model wind power in PHORUM, we need hourly wind

output data, which the EPA data do not include. In the future
base case (scenario 4), we add wind generation using hourly
wind profiles from NREL’s Eastern Wind Integrations and
Transmission Study (EWITS) dataset.18 The EWITS data set
contains 5 min modeled wind data for sites across the Eastern
Interconnect that we aggregate to hourly data. We add sites in
each PHORUM transmission region in order of capacity factor
to produce the same aggregate annual amount of wind energy
within that region that is forecasted in the EPA Parsed Results.
In the high future wind scenario (scenario 5), we instead add
sufficient wind sites to meet 20% of load, taking the EWITS
sites from within the PJM boundaries with the highest capacity
factors. The Supporting Information provides a summary of the
relevant information obtained from each specific dataset.

Nonvehicle Load. To model the effect of vehicle load on the
dispatch of power plants, we need to account for the baseline
nonvehicle load. For the 2010 scenarios (scenarios 1, 2, and 3),
we used hourly load data for PJM for 2010.19 For the future
grid scenarios (scenarios 4 and 5), we scaled the 2010 load data
by a constant factor, which we calculate by dividing the
forecasted total U.S. electricity load in 2018 by the total U.S.
electricity load in 2010.20 Using a simple scaling factor to
calculate the future load assumes the use patterns and ratios of
consumers for each use pattern remains constant as population
increases. In practice, use patterns may differ in the future, but
we lack hourly predictions of how load will evolve.

Plug-in Vehicle Fleet. Vehicle driving profiles are the basis
for estimating the demand for electricity for vehicle charging.
We model the driving profiles using data from the 2009
National Household Travel Survey.21 This dataset contains all
the trips traveled in 1 day for approximately 100 000 passenger
cars across the United States, giving the start and finish time,
location, and distance traveled for each trip. We assume that
uncontrolled charging happens at home starting immediately
after the last trip of the day and proceeds at the maximum
charge rate. Controlled charging can happen any time between
the last trip of the day and the first trip of the next day, but the
battery must be fully charged in that time period. Because of
the binary variables needed to represent each driving profile in
the case of controlled charging, we select a subset of 20 vehicle
profiles from the entire dataset for tractability. We selected and
weighted these subset vehicle profiles to optimally represent the
aggregated data set, following the method in Weis et al.12

Further, for this analysis, we considered a 10% electric vehicle
penetration of the passenger vehicle fleet (Weis et al.12 suggest
that generation cost implications are nearly linear with electric
vehicle penetration in NYISO). We allocated electric vehicles to
each transmission region proportional to population, so
vehicles contribute most to load in the population centers on
the east side of PJM and the Chicago area, and we examine
alternative adoption patterns in sensitivity analysis.

Valuation of Health and Environmental Damages. The
output of PHORUM includes hourly generation from all power
plants in the PJM system. Using the emissions factors
previously described, we then estimate total emissions for
each power plant, and we estimate damages from these
emissions using the AP2 model, the newest version of the Air
Pollution Emission Experiments and Policy analysis (APEEP)
model.22 This model estimates monetized marginal damages
that result from the emissions of five air pollutants (SO2, NOX,

Figure 1. PJM power system divided into five transmission-
constrained regions with simplified, power-limited transmission
constraints between regions, represented by the black bars.

Environmental Science & Technology Article

DOI: 10.1021/es505822f
Environ. Sci. Technol. 2015, 49, 5813−5819

5815

http://dx.doi.org/10.1021/es505822f


NH3, PM2.5, and VOCs) in each county in the U.S., given
baseline U.S. emissions from the National Emissions Inventory
for the year being modeled. Using an air quality and transport
model, the AP2 model first quantifies the change in pollutant
concentrations that result from an additional ton of each
pollutant emitted in each county using an air quality and
transport model. The model then calculates human exposure to
the increased concentrations based on the populations of the
affected areas and estimates the change in morbidity and
mortality associated with such exposure based on epidemio-
logical dose−response models for each pollutant. The model
also includes reductions in recreational use, agricultural yields,
visibility, and other effects based on the increased concen-
trations. However, health impacts, monetized using a $6 million
value of statistical life, make up the majority of damages. These
damage estimates are available for each pollutant for emissions
at ground level vs at stack height. We use the stack height
damages in this study, as all emissions come from power plants.
AP2 damage values are available for 2002, 2005, 2008, and
2011. However, only the 2005 AP2 model explicitly
incorporates uncertainty as a distribution of potential out-
comes, so we use the 2005 damage values as our base case and
show robustness of our findings for other years in the
Supporting Information. This uncertainty includes a range of
values for the value of a statistical life and other key input
parameters but not a measure of error in the simplified air
quality model or in the epidemiological studies. We also
compare our results in a sensitivity case to damages calculated
using a different model of marginal damages, EASIUR. This
model was developed using regressions on data from a state-of-
the-science air transport model and only includes human health
effects. The Supporting Information provides more details
about the EASIUR model.

3. RESULTS AND DISCUSSION

Results. We find that controlling the charging of plug-in
electric vehicles can significantly reduce the cost of generating
electricity for vehicle charging, but with the tradeoff of
increasing coal generation and therefore increasing emissions
and health and environmental damages in many cases. The
reductions in generation cost range from 23% to 34%
depending on the scenario, as shown in Table 2. The cost
reductions come from lowering fuel, operating, maintenance,
and start-up costs through changes in plant dispatch.

Figure 2 shows the power generation attributable to vehicle
charging with controlled and uncontrolled charging, given a
10% electric vehicle penetration. The reductions in generation
costs associated with controlled charging for scenarios 1−4
stem primarily from shifting generation away from higher-
marginal-cost natural gas plants to lower-marginal-cost coal
plants. Controlled charging allows for this shift in generation by
delaying charging from peak demand hours, when drivers arrive
home, to later at night, when the cheaper coal power plants are
available. In the high wind case, controlled charging also allows
for the system to use approximately 1 TWh of wind energy that
would have otherwise been lost through curtailment. The
pumped hydro storage systems in PJM provide flexibility in the
uncontrolled charging scenarios, which causes the slightly
higher generation observed in each uncontrolled charging case
due to efficiency losses from storing and retrieving energy.
Figure 3 summarizes the resulting changes in emissions

under controlled charging. The shift toward more coal
generation causes an increase in emissions of CO2, SO2,
NOX, and PM2.5 in scenarios 1−4, compared to uncontrolled
charging in each scenario. In these scenarios, VOC and NH3
emissions decrease with controlled charging. Natural gas power
plants are a larger source of these emissions than coal plants, so
this reduction is not surprising given the shift toward coal
generation associated with controlled charging in these
scenarios. In scenario 5, CO2, PM2.5, VOC, and NH3 emissions
decrease with controlled charging as a result of decreases in
total fossil fuel use that take place because the system is able to
integrate more wind compared to the uncontrolled charging
scenario. However, controlled charging in this high wind
scenario continues to drive an increase in SO2 and NOX
emissions compared to uncontrolled charging. In this scenario,
emissions for all pollutants from natural gas plants decrease, but
the increase in emissions of SO2 and NOX from coal plants is
larger than the reduction in emissions of these pollutants from
the natural gas plants. The Supporting Information provides a
detailed breakdown of the total emissions by fuel type for the
high wind scenario.
Figure 4 summarizes total social benefits (reductions in

operation costs plus reductions in externality costs) due to
controlled charging. Error bars display a 95% confidence
interval for net benefits from the quantified uncertainty in the
AP2 model (we explore other sources of uncertainty in our
model via sensitivity analysis). We find that in the recent grid
(scenarios 1−3), increased social costs from controlled
charging emissions outweigh reductions in generation cost.
These emissions costs stem largely from increased morbidity
from SO2 emissions, primarily due to secondary particulate
matter formed in the atmosphere. In scenario 4, controlled
charging leads to an increase in damages roughly equivalent to
the reductions in generation costs, resulting in near-zero net
benefits. In scenario 5, with high wind penetration, reductions
in generation cost are larger than the increase in emissions
externality costs.
Because our model cannot directly account for many sources

of uncertainty, we test the robustness of these results using a
number of sensitivity cases. We run cases with electric vehicles
concentrated in urban areas, no transmission constraints in the
future grid, additional reserves for wind generation, and two
additional fuel price scenarios in the future grid. We also
evaluate the changes in emission damages using AP2 point
estimate values from 2002, 2008, and 2011 as well as with an
alternative model of marginal emission damages, EASIUR. The

Table 2. Reduction in Annual Generation Costs via
Controlled Charging vs Uncontrolled Charging for the 10%
Electric Vehicle Fleet

reduction in annual generation costs with controlled
charging

scenario
total

reduction
per vehicle
reduction

% of total charging
generation costs

Base Case (Volt) $130
million

$54 32%

Smaller Battery (Plug-
in Prius)

$54
million

$22 30%

Larger Battery (Tesla) $137
million

$58 24%

Future (2018 Grid) $87
million

$37 23%

High Wind Future $115
million

$49 34%
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Supporting Information includes detailed results for these cases.
Our key finding, that controlled charging of electric vehicles
produces negative net social benefits in the recent grid but
could produce net positive social benefits in a future grid with
sufficient coal retirement and wind penetration, is robust across
all scenarios.
We do not intend for our representation of the future PJM

grid to be a perfect prediction of the grid in 2018. It is difficult
to know exactly which plants will choose to upgrade their
emission control technology or retire, and the predictions for
2018 do not include the effect of the proposed carbon policy

for existing sources, since its exact effects are difficult to predict.
Instead, the future grid scenarios provide a plausible grid with a
lower emissions footprint. We see that even with substantially
more wind power than is predicted by 2018, along with
plausible improved emissions rates and coal retirements, the net
benefits from controlling the charge rate of electric vehicles
may be small, and we cannot be certain they will be positive, as
the marginal damages from emissions change over time.
There are limitations to the model outside of the scope of

sensitivity cases we examined. A detailed discussion of this
study’s limitations is provided in the Supporting Information.

Figure 2. Change in system generation due to electric vehicle charging for controlled and uncontrolled charging for a 10% electric vehicle
penetration. The recent grid scenarios are based on the 2010 PJM power system with the 2010 GREET PHEV35 as the base case vehicle. The future
grid scenarios are based EPA’s projections for the 2018 PJM grid with the 2015 GREET PHEV35 as the vehicle. CC = combined cycle, CT =
combustion turbine.

Figure 3. Average change in emissions due to controlled vs uncontrolled charging in PJM per vehicle per year. Red columns depict increases in
emissions due to controlled charging; blue columns show decreases in emissions due to controlled charging.
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Although some of these limitations are difficult to quantify in
the current modeling framework, we do know that the 2010
PHORUM model is fairly representative of reality despite the
limitations. Lueken and Apt analyzed the capacity factor of
plants dispatched by PHORUM and compared them to actual
capacity factors from 2010. They found that the mean error in
capacity factor was 3.6%.11 Additionally, although the model
cannot capture all factors that affect grid operations and we do
not claim to perfectly predict operations in either time period, it
is nevertheless useful to know how an idealized grid with
realistic constraints would respond to EV load with different
charging patterns to provide insights about real-world systems.
We find that although controlled electric vehicle charging

may significantly reduce the generation cost of electric vehicle
charging in PJM, it may also create increases in emissions
externality costs due primarily to increased use of coal-fired
power plants. The net implication is that controlled electric
vehicle charging creates negative net social benefits in the
recent grid scenarios but might produce positive net social
benefits in a future grid with sufficient coal retirement and wind
penetration. This finding is robust to uncertainty in vehicle
adoption patterns, transmission constraints, reserve require-
ments, fuel prices, and air emissions implications.
In general, controlled charging has potential for reducing

generation costs, but its net implications depend on the
characteristics of the power plant fleet. In other regions with
tighter environmental regulations, more renewable generation,
less coal power, and/or inexpensive natural gas plants,
controlled charging could lead to lower environmental and
health damages. Our results also suggest that the externality
costs missing from the current power system operations based
on generation cost minimization are substantial and should be
considered when making policy decisions to avoid large
increases in human health and environmental costs.
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