
structure. Integrating sustainable energy sys-
tems into the infrastructure would allow rapid
adoption of electrolysis-based hydrogen pro-
duction, whenever these future transportation
systems become viable. Since the 1930s, the
recognized vision of the hydrogen economy
has been to allow the storage of electrical
energy, reduce environmental emissions, and
provide a transportation fuel. This goal is
clearly achievable, but only with a sustained,
focused effort.
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Hybrid Cars Now, Fuel Cell Cars Later
Nurettin Demirdöven1 and John Deutch2*

We compare the energy efficiency of hybrid and fuel cell vehicles as well as
conventional internal combustion engines. Our analysis indicates that fuel cell
vehicles using hydrogen from fossil fuels offer no significant energy efficiency
advantage over hybrid vehicles operating in an urban drive cycle. We conclude that
priority should be placed on hybrid vehicles by industry and government.

Our interest in moving toward a hydrogen
economy has its basis not in love of the
molecule but in the prospect of meeting en-
ergy needs at acceptable cost, with greater
efficiency and less environmental damage
compared to the use of conventional fuels.
One goal is the replacement of today’s auto-
mobile with a dramatically more energy-
efficient vehicle. This will reduce carbon di-
oxide emissions that cause adverse climate
change as well as dependence on imported
oil. In 2001, the United States consumed 8.55
million barrels of motor gasoline per day (1),
of which an estimated 63.4% is refined from
imported crude oil (2). This consumption re-
sulted in annual emissions of 308 million

metric tons (MMT) of carbon equivalent in
2001, accounting for 16% of total U.S. car-
bon emissions of 1892 MMT (3).

Two advanced vehicle technologies that are
being considered to replace the current fleet, at
least partially, are hybrid vehicles and fuel cell
(FC)–powered vehicles. Hybrid vehicles add a
parallel direct electric drive train with motor and
batteries to the conventional internal combustion
engine (ICE) drive train. This hybrid drive train
permits significant reduction in idling losses and
regeneration of braking losses that leads to great-
er efficiency and improved fuel economy. Hy-
brid technology is available now, although it
represents less than 1% of new car sales. FC
vehicles also operate by direct current electric
drive. They use the high efficiency of electro-
chemical fuel cells to produce power from hy-
drogen. For the foreseeable future, hydrogen will
come from fossil fuels by reforming natural gas
or gasoline. FC vehicle technology is not here
today, and commercialization will require a large
investment in research, development, and
infrastructure (4).

Here, we evaluate the potential of these
advanced passenger vehicles to improve en-

ergy efficiency. We show that a tremendous
increase in energy efficiency can be realized
today by shifting to hybrid ICE vehicles,
quite likely more than can be realized by a
shift from hybrid ICE to hybrid FC vehicles.

Energy Efficiency Model
To provide a basis for comparison of these
two technologies, we use a simple model (5)
for obtaining the energy efficiency of the
various power plant– drive train–fuel com-
binations considered in more detailed stud-
ies (6–11). In general, the energy efficiency
of ICEs with a hybrid drive train and from
FC-powered vehicles vary depending on
the vehicle configuration and the type of
engine, drive train, and fuel (natural gas,
gasoline, or diesel).

For each configuration, we determine
well-to-wheel (WTW) energy efficiency for a
vehicle of a given weight operating on a
specified drive cycle. The overall WTW ef-
ficiency is divided into a well-to-tank (WTT)
and tank-to-wheel (TTW) efficiency so that
WTW � WTT � TTW.

We begin with the U.S. Department of En-
ergy (DOE) specification of average passenger
energy use in a federal urban drive cycle, the
so-called FUDS cycle (12). For example, for
today’s ICE vehicle that uses a spark ignition
engine fueled by gasoline, the TTW efficiency
for propulsion and braking is 12.6% (Fig. 1A).
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The TTW efficiency of other configura-
tions is estimated by making changes in the
baseline ICE parameters and calculating en-
ergy requirements beginning with energy out-
put. A hypothetical hybrid ICE (HICE),
based on current hybrid technology, that
completely eliminates idling losses and cap-
tures a portion (50%) of braking losses for
productive use (13) will have a TTW effi-
ciency of 26.6% (Fig. 1B). Both the ICE and
the HICE use gasoline fuel directly, so no
fuel processing is needed.

A likely hydrogen-based car might be a
proton-exchange membrane (PEM) FC-
powered vehicle with a hybrid power train.
This advanced fuel cell (AFC) vehicle has
an on-board fuel processor that reforms
gasoline to hydrogen fuel suitable for feed
for the PEM fuel cell. We assume a reform-
er efficiency of 80% and 50% efficiency for
the FC stack operating over the urban drive
cycle. We include a power train with the
same characteristics as the HICE vehicle.
The TTW efficiency of this configuration is
28.3% (Fig. 1C).

It is apparent that any alternative vehicle
configuration of fuel–power plant–drive train
can be considered in a similar fashion. For
example, if hydrogen were available without
energy cost, the overall efficiency would im-
prove to 39.0%, over three times that for the
conventional ICE (14). A diesel ICE with a
hybrid power train
could achieve an
efficiency of 31.9%,
assuming that this
higher compression
direct-injection en-
gine has an efficiency
of 45.0% compared
to 37.6% for the gas-
oline ICE.

Our results (Fig. 2)
are in reasonably good
agreement with those
of more detailed stud-
ies but do not re-
quire elaborate simula-
tion models. Figure 2
shows that, except for

the Argonne National Laboratory/General Motors
(ANL/GM) (6) study, the relative gain in efficien-
cy in moving from an ordinary ICE to a HICE is
more than twofold. The reason for this difference
is not clear, because the TTW analysis in that
study has its basis in a GM proprietary
simulation model.

Validating Our Model
To test the validity of these comparisons and our
simple model, we have used an advanced vehicle
simulator called ADVISOR, developed by the
National Renewable Research Laboratory
(NREL) of DOE (15). ADVISOR provides es-
timates of energy efficiencies for different vehi-
cle configurations. ADVISOR shows the broad
range of vehicle performance that is possible
with a reasonable choice of system parameters
such as maximum engine power, maximum mo-
tor power, transmission type, and brake energy
regeneration. The parameters we selected for the
simulation of the ICE, HICE, and AFC are given
in Table 1; for comparison, TTWs based on this
simulation are 28.8% for the Toyota Prius and
26.2% for the Honda Insight. Except for the
ANL/GM results, all studies point to large po-
tential energy efficiency gains from hybrid vehi-
cles in urban drive cycles compared to cars with
conventional ICEs (16).

Our analysis shows that hybrids offer the
potential for tremendous improvement in en-
ergy use and significant reduction in carbon
emissions compared to current ICE technol-
ogy. But hybrid vehicles will only be adopted
in significant quantities if the cost to the
consumer is comparable to the conventional
ICE alternative. Hybrid technology is here
today, but, of course, hybrid vehicles cost
more than equivalent ICE vehicles because of
the parallel drive train. Estimates of the cost
differential vary, but a range of $1000 to
$2000 is not unreasonable. Depending on the
miles driven, the cost of ownership of a hy-
brid vehicle may be lower than a convention-
al ICE, because the discounted value of the
fuel saving is greater than the incremental
capital cost for the parallel drive train and

Fig. 1. Energy flow for various vehicle configurations. (A) ICE, the conventional internal combustion, spark
ignition engine; (B) HICE, a hybrid vehicle that includes an electric motor and parallel drive train which
eliminates idling loss and captures some energy of braking; (C) AFC a fuel cell vehicle with parallel drive
train. The configuration assumes on-board gasoline reforming to fuel suitable for PEM fuel cell operation.

Fig. 2. Comparison of WTW energy efficiencies of advanced vehicle systems
using gasoline fuel. Color coding follows that in Fig. 1. 90% WTT efficiency
in all cases; thus WTW � 0.90 TTW. Data for ICE and HICE is from (7 ),
table 5.3. Data for AFC is from (8), which does not give energy efficiency
directly. We derive a range for energy efficiency by comparing data in
tables 8 and 9 for MJ/km for vehicle and fuel cycle for the 2020 ICE hybrid
to that of the gasoline FC hybrid given in (7), table 5.3. Data from (6 ),
table 2.1. Data from NREL’s ADVISOR simulation; for details, see Table 1.
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electric motor. Thus, hybrid vehicles can
con tribute to lower emissions and less
petroleum use at small or negative social
cost (17 ). Today only Toyota and Honda
offer hybrids in the United States; Daimler-
Chrysler, Ford, and General Motors are
planning to introduce hybrids in the period
from 2004 to 2006. At present there is a
federal tax credit of $1500 for purchase of
a hybrid vehicle, but it is scheduled to
phase out in 2006 (18).

Fuel cell technology is not here today.
Both the Bush Administration’s Freedom-
CAR program and the earlier Clinton Ad-
ministration Partnership for a New Gener-
ation of Vehicles (PNGV) launched major
DOE research and development initiatives
for FC-powered vehicles. The current
FreedomCAR program “focuses govern-
ment support on fundamental, high-risk
research that applies to multiple passenger-
vehicle models and emphasizes the develop-
ment of fuel cells and hydrogen infrastructure
technologies” (19). A successful automotive FC
program must develop high-durability FC stacks
with lifetimes of 5 to 10 thousand hours, well
beyond today’s experience. It is impossible to
estimate today whether the manufacturing cost
range that FC stacks must achieve for economical
passenger cars can be reached even at the large-
scale production runs that might be envisioned.

The government FC research and devel-
opment initiative is welcome, but it is not
clear whether the effort to develop economic
FC power plants for passenger cars will be
successful. In parallel, we should place pri-
ority on deploying hybrid cars, beginning
with today’s automotive platforms and fuels.
If the justification for federal support for
research and development on fuel cells is
reduction in imported oil and carbon dioxide
emissions, then there is stronger justification
for federal support for hybrid vehicles that
will achieve similar results more quickly.
Consideration should be given to expanding
government support for research and devel-
opment on generic advanced hybrid technol-
ogy and extending hybrid vehicle tax credits.
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Table 1. Input and output vehicle parameters obtained from NREL’s ADVISOR simulations. We
assumed 1500 kg for the total vehicle weight, including two passengers and fuel on board. The
actual weights of the Toyota Prius and Honda Insight with two passengers and fuel on board are
1368 kg and 1000 kg, respectively. Auxiliary power is 700 W except for the Honda Insight, for which
it is 200 W. The simulations are over a FUDS cycle. Fuel use and TTW calculations follow the
definition of efficiency given in (5), which is different than the “overall system efficiency” defined
in the NREL’s ADVISOR. Of course, the underlying performance is the same.

ICE HICE AFC Prius Insight

Vehicle
Max power (kW) 102 83 70 74 60
Power:weight ratio (W/kg) 68 55 47 54 60
Frontal area (m2) 2 2 2 1.75 1.9
Rolling resistance coefficient 0.009 0.009 0.009 0.009 0.0054

Engine–motor–fuel cell stack
Max engine power (kW) 102 43 43 50
Max engine efficiency (%) 38 38 39 40
Max motor power (kW) 40 40 31 10
Max motor efficiency (%) 92 92 91 96
Max fuel cell power (kW) 30
Max fuel cell stack efficiency (%) 56

Acceleration
Time for 0 to 60 mph (s) 18 10 13 15 12

Fuel use
1317 1189

Fuel energy use (kJ/km) 3282 1536 1553 (1274) (982)
Fuel economy (mpg) 21 44 43 53 69

Average efficiencies (%)
Engine efficiency 21 30 28 25
Motor efficiency 79 84 81 90
Reformer efficiency 80
Fuel cell stack efficiency 51
Round-trip battery efficiency 100 84 81 82
Transmission efficiency 75 75 93 100 92
Regenerative braking efficiency 35 39 41 38
TTW efficiency 12.6 27.2 26.6 28.8 26.2
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