ELEC-E8101 Digital and Optimal Control Exercise 2

The problems marked with an asterisk (\star) are not discussed during the exercise session. The solutions are given in MyCourses and these problems belong to the course material.

1. The pulse transfer function of a system with ZOH is:

$$H(z) = \frac{0.2}{z - 0.8}.$$

- a) Determine the *pulse* response.
- b) Determine the *step* response.
- c) Show the step and pulse responses of the system on MATLAB.
- 2. Consider the following difference equation:

$$y[k+2] - 1.3y[k+1] + 0.4y[k] = u[k+1] - 0.4u[k].$$

- a) Determine the pulse transfer function.
- b) Is the system stable? Justify your answer.
- 3. The considered continuous-time process has first-order dynamics and is given by

$$\tau \dot{y}(t) + y(t) = u(t).$$

- a) Find the Laplace transfer function of the system.
- b) Discretize the process using the step-invariance method with a sampling time of h.
- c) Determine the unit step response of the discretized system.
- 4. Let us consider the following scalar state-space model of system \mathcal{G} :

$$\mathcal{G}: \begin{cases} \dot{x}(t) = ax(t) + bu(t) \\ y(t) = cx(t) \end{cases}$$

- It is assumed that parameters c and b are positive, and a is non-zero.
 - a) Find the Laplace transfer function of the system. For what parameter values of a is the continuous-time process stable?
 - b) Discretize the process (sampling time h) using the Tustin transformation. For what parameter values of a is the discrete-time process stable?

- c) The continuous-time process is controlled by a proportional controller. For what values of gain K_P is the controlled system stable?
- d) The discrete-time process is controlled by a proportional controller. For what values of gain K_P is the controlled system stable?
- *5. Compute the inverse z-transform of the following transfer function:

$$X(z) = \ln\left(\frac{1}{1-az^{-1}}\right), \quad |z| > |a|.$$

Hint: Note that $\ln(1-x) = \sum_{k=1}^{\infty} \frac{1}{k} x^k$, |x| < 1.