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Abstract—A model-based approach to the detection and
diagnosis of mechanical faults in rotating machinery is studied
in this paper. For certain types of faults, for example, raceway
faults in rolling element bearings, an increase in mass unbalance,
and changes in stiffness and damping, algorithms suitable for
real-time implementation are developed and evaluated using
computer simulation.

Index Terms—Fault detection, fault diagnosis, rotating ma-
chinery.

I. INTRODUCTION

OTATING machines are essential components in most of
today’s manufacturing and production industries. Because it is
usually not practical or economical to use redundant systems,
real-time monitoring and diagnostics for rotating machinery
equipment is required. In this paper, model-based techniques
are developed for monitoring, fault detection, and diagnosis
of faults in rotating machines. For the detection of unbalance,
changes in stiffness and damping, etc., a collection of statistical
observers or nonlinear filters is designed. In this multiple
model framework, each fault to be identified is associated with
a certain structure and parameters in the rotating machinery
model [1]–[8]. We also present a novel technique that incorpo-
rates failure detection filters and sliding-mode detectors for the
detection and diagnosis of faults in a rolling element bearing
[9].

Rotating machinery diagnostics is an important area. Fre-
quency-domain analysis of vibration data, in particular, the
Fourier transform, is a common approach. Here, connections
between certain spectral properties and the fundamental nature
of various vibration problems and their origins have been
perfected and widely used. However, while spectrum analysis
has the potential of providing a major improvement over
conventional time-based analysis techniques in diagnosing
vibration related problems, there are numerous examples where
spectrum analysis does not provide all the insights needed to
identify the cause of the vibration problem. Other analysis tools
such as spectrograms, wavelets, etc., have also been used for
the same purpose.
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Certain fault modes in rotating machinery are accompanied
by an increase in vibration intensity, e.g., rub impact between
rotating and nonrotating parts. The vibration signals can exhibit
rich dynamics such as periodic, quasi-periodic, and chaotic be-
havior. Inherent in this trend from regular behavior (e.g., small-
amplitude linear orbital motion characteristic of a normal ma-
chine) to complicated behavior (e.g., large-amplitude quasi-pe-
riodic or chaotic orbital motion associated with a faulted oper-
ating condition) is the emergence of nonlinear characteristics in
the system’s vibration response. Thus, a major goal of this re-
search was to develop signal processing techniques that could
extract special temporal features associated with fault modes in
rotating machinery from noise corrupted vibration data. This is
accomplished by using a statistical model-based approach for
the study of rub impact and a novel implementation of failure
detection filters for raceway faults in rolling element bearings.

II. M ATHEMATICAL MODEL OF RUB IMPACT

“Rub impact” is the phenomenon of intermittent or con-
tinuous contact between rotating and stationary parts at
close-running clearance locations in a rotating machine. Ro-
tating machinery generally operates most efficiently when the
close sealing clearances between rotor and stator are kept to a
minimum. Misalignment and rotor mass unbalance can readily
lead to an operating condition where the rotor rubs against the
stationary parts (journal to bearing, blades to casing, shaft to
seal, etc.). These intermittent rubs can cause complicated non-
linear dynamic behavior that is difficult to predict or diagnose
using conventional time-based analysis or spectrum analysis
techniques. It is important to detect and diagnose this operating
condition since continued rubbing can lead to accelerated
wearing of close-clearance parts, or machine failure.

The rub impact model consists of a Laval rotor and a
nonlinear finite boundary stiffness with Coulomb friction. The
Laval rotor is modeled as a massless shaft mounted in two
bearings at each end. A thin rigid disc (the rotor) is located
symmetrically between the bearings. The disc of mass
rotates with a constant angular velocitywith radius around
the center of the disc. It is not necessary that the center of
mass coincide with the center of rotation (see Fig. 1).

The transverse bending vibrations of the rotor are modeled
with two generalized coordinates. The disc translates in the
and directions and rotates around. The position of with
respect to is given by the vector and the position of with
respect to by , where and are expressed in terms of

and as
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Fig. 1. Two-degrees-of freedom rotor/stator system.

and are the generalized coordinates,is the distance
from and , while is the rotation angle. The disc is loaded
with a constant gravitational force due to the weight of the

disc, a linear restoring force , and a nonlinear force . The
linear restoring force acts at and results from the isotropic
stiffness and isotropic damping of the shaft and its bear-
ings. The nonlinear force is produced by the contact and
rubbing of the rotor against the stationary housing. The contact
condition is . The housing acts on the

disc with radial force and tangential or friction force .
The radial (Hertzian contact) force is given by

The friction force is governed by the Coulomb law with
coulomb friction coefficient

The equations of motion are obtained from Newton’s Law

Given in coordinates

and

The equations of motion are transformed to nondimensional
form by choosing the bearing radial clearanceas the character-
istic length and as nondimensional time, and .
The nondimensional substitutions are

Due to the presence of modeling errors, input disturbances,
and measurement noise, a nonlinear continuous-time stochastic
model with additive plant and measurement noises is used.
Define the state vector , the input
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vector , and the output vector
, the state-space model of the system is given

by

where

and

The initial state , process noise with gain , and mea-
surement noise are assumed to be independent Gaussian
white noise processes with known statistics.

III. ROLLING ELEMENT BEARING MODEL

Assuming a rotor-bearing system with a stationary outer ring
and one accelerometer mounted on the bearing housing as close
as possible to the outer race, a one-dimensional vibration model
is derived.

Fig. 2 represents a schematic diagram of this vibration model.
This model is based on the masses of bodies in motion and var-
ious stiffness and damping factors.

1) , and are the mass of the rotor inner ring, the
stiffness of the shaft and the inner race contact in series,
and the damping of the shaft, respectively.

2) , and are the mass of the balls, the stiffness of
the contact, and the damping of the contact, respectively.

3) , and are the mass of housing outer ring, the
stiffness of the housing with the stiffness of the contact in
series, and the damping of the housing, respectively.

4) s denote the excitation forces due to eccentricity and
faults (inner, outer, and ball).

The values of the masses and the stiffness parameters in the
proposed model have a special importance, because they are the
components that determine the frequency response of the model.

Fig. 2. Schematic diagram of roller bearing model.

The values of these parameters can vary considerably depending
on the size, shape, and material used for the bearing and machine
components, and the location of the sensor. The manufacturer
can normally provide the nominal values for many of these com-
ponents. However, the stiffness of the shaft and housing vary
from one rotor-bearing system to another. Moreover, the radial
stiffness of the bearing is a nonlinear function of the surface de-
formation at the contact points and the radial load, which also
varies from case to case and time to time. The contact stiffness
is a nonlinear time varying (periodic) function of the relative
displacement of the contact surfaces and the temporal location
of the rolling elements measured with respect to radial location
of the accelerometer. In this study, the contact surfaces of the
healthy bearing are assumed to be uniform and a linearized ver-
sion of the contact stiffness is used in the model. However, for
improved numerical simulation performance and a better match
with real vibration data, the nonlinear and periodic stiffness was
incorporated into the model and the results are given in [9].
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Fig. 3. Multiple-model detection system.

IV. DETECTIONSYSTEM DESIGN AND IMPLEMENTATION

We begin by considering the nonlinear rub impact dynamical
system. In this model, certain faults occur due to changes in the
model parameters, which, in turn, cause the dynamic behavior
of the states and to change.

The objective is to monitor the onset and progression of a
fault given only the measurement. Considering the bearing as
a local sensor of a nonlinear rotating machine, we can detect
faults that occur in the sensor itself (the bearing) or in a remote
component of the rotating machine (e.g., another bearing sup-
port or station. For rub impact, two types of faults are consid-
ered:

1) external faults(i.e., external from the bearing being mon-
itored), for example, a change in the unbalance(for
normal operation ), or a change in the static load

applied to the system;
2) internal faults in the sensor (bearing), for example, a

change in either the damping(e.g., opening of a seal in
a rotating element) or the stiffness (e.g., progression
of a crack in a shaft).

A nonlinear filtering approach to fault detection is used. Fault
diagnosis is based on statistical testing of the innovations (resid-
uals) of a bank of stochastic nonlinear observers. Fault detec-
tion and diagnosis are obtained simultaneously using hypothesis
testing techniques. A block diagram of the diagnostic system is
given in Fig. 3. The innovations of the various filters are mon-
itored and the conditional probability that each filter model is
the process model is computed and in the simplest detection
schemes, the filter with the highest probability is declared to

match the current operating condition. Each one of the filters is
derived from a specific model of the system, which corresponds
to a particular operating condition.

Each nonlinear observer during rub–no-rub operation is given
by

where

and

and are the estimated outputs of the nonlinear observer
and the clearance has been normalized to the value of one.

Here, are the state and the output
of the observer, respectively, where

the sigma-algebra generated by . The non-
linear observer is a locally exponentially stable unbiased state
estimator with uniformly bounded variance. A detailed proof is
given in [10].

For the detection and diagnosis of raceway faults in rolling
element bearings, we use failure detection filters, a popular
model-based technique for actuator and sensor fault detection.
A linear time-invariant model of the system given in Fig. 2 can
be written in the general form

From this point on, or subscripts “in” and “out” denote
inner and outer race faults, respectively.and represent the
input maps of known inputs to the state and output spaces, re-
spectively. Also, are excitation inputs due to displacements
caused by faults andrepresents the known inputs to the system.

In the context of detection filter design, afault spaceis a
subspace of the state space that the inputs are mapped to by
the failure maps. The fault spaces are denoted bys and the
failure maps (matrices) by s. The unknown sources of exci-
tation to the rotor-bearing system are the excitations due to the
bearing defects. Other sources of excitation such as mass unbal-
ance are treated as known inputs for this discussion. Detection of
mass unbalance can be accomplished using the multiple model
scheme discussed previously. The full observer is given by

Note that, because the observer is based on the dynamics of
the healthy system, the fault inputs are not included.repre-
sents the output injection part of the observer. The error dy-
namics are given by

If is observable and is such that is stable,
then in the absence of disturbances and modeling errors in
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steady state, the residual is nonzero only if the failureis
nonzero. It follows that in the presence ofa single fault any
stable observer is able to detect it, by simply monitoring the
residual. When the residual does not converge to zero, a fault
has occurred. A more difficult task, diagnosis, is to determine
which fault has occurred.

An observer designed such that it is able to separate faults
is called a detection filter. Specifically, a detection filter is an
observer with the property that, when a fault input is nonzero,
the error remains in a -invariant subspace which
contains the reachable subspace of . Hence, the
residual remains in the output subspace . Furthermore, the

s need to be independent for fault isolation.
In order to use this approach for the fault detection and isola-

tion of rolling element bearings, we need to redefine the output
matrix, . In order to separate faults we need isolated
output subspaces . Because the fault space corresponding
to a ball fault is dependent on the inner and outer raceway fault
spaces, any subspace that includes the ball fault space will have a
nonempty intersection with any subspace that includes the inner
and outer fault spaces. As a result of this, we will focus our at-
tention only on inner and outer raceway faults.

Focusing on inner and outer raceway faults, the output ma-
trices ( and ) are shown at the bottom of the page.

This output matrix represents two measurements of the rotor-
bearing system: the vibration of the rotor (the first row of) and
the vibration of the casing of the bearing (the second row of).

The detection problem is to find a set of subspaces
, where is the number of possible faults such that

for some the following conditions (detectability conditions)
are met [5]:

subspace invariance

fault inclusion

for all and output separability

stability.

The output separability condition is satisfied for the
fault spaces of inner and outer raceway faults. That is,

, for and .
The detectability conditions can be rewritten with

replaced by where the one-dimensional subspace span
. The detectability conditions can be rewritten as

subspace invariance
output separability,

stability.

In order to satisfy subspace invariance, selectso that the s
are eigenvectors of the closed-loop system matrix . At
the same time, needs to be chosen such that is a
Hurwitz (stable) matrix.

The left eigenstructure assignment method can be used to se-
lect , i.e.,

where s are negative real values corresponding to the eigen-
values of the closed-loop system . The s are chosen
to be real because they correspond to the real eigenvectorss.
A solution is obtained using a left inverse of . In order to
accommodate both fault cases in the design, thes are chosen
as distinct negative real numbers and a solution foris obtained
for according to

After solving for , we need to check the stability of the
closed-loop system . The steady-state error when the
input is constant is given by

In the case of no fault, the error dynamics reduce to

Because the closed-loop system is stable, the error
will converge to zero.

In the presence of noise, a rank condition to determine the
linear independence of the failure directions is not practical.
Therefore, a robust technique capable of extracting these pre-
determined directions is required. Inspired by the concepts of
sliding-mode observers and controllers [11], [12], the theory of
sliding-mode detectors has been developed [9]. Sliding-mode
detectors are used in conjunction with detection filters to con-
tinuously monitor the behavior of the residuals in the error space
of the detection filters. The sliding surfaces are positioned ac-
cording to the fault subspaces (i.e., fault directions). If the in-
puts to the sliding-mode detector (the detection filter residuals)
are in the same direction as the sliding surface, the trajectory of
the sliding-mode detector will remain on the sliding surface. On
the other hand, when the input is not on the sliding surface, the
trajectory will not necessarily stay on the sliding surface. This
property provides a means for determining the existence of a
fault (detection) and the monitoring of the fault condition.
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Fig. 4. Stochastic observer for normal operating condition.

Fig. 5. Stochastic observer for Fault 1 Level 3 operating condition.

Fig. 6. Probability for Normal and Fault 1 operating conditions.

The sliding-mode detector consists of multiple detection
units, each corresponding to particular fault. The free dynamics
of a detection unit are given by

The parameters and are chosen such that the equilibrium of
the model (0, 0) is asymptotically stable.

The sliding surface is chosen to be a one-dimensional sub-
space passing through the origin. The sliding-mode structure for
the detection units is given by

where is the signum function and the line
is the sliding surface representing one of the fault directions in

the output space. Thes are chosen such that when the trajectory
is on one side of the switching surface, the corresponding equi-
librium is on the opposite side. This makes the sliding surface
attractive and with the asymptotically stable free dynamics this
guarantees that the trajectory would reach the sliding surface in
finite time. The values of thes determine the rate at which the
trajectories approach the sliding surface. Appropriate values for
these parameters (s) are determined to provide a compromise
between the rate at which trajectories approach and deflect from
the sliding surface.
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Fig. 7. Probability for Fault 1 Level 2 and Fault 1 Level 3 operating conditions.

The detection units are combined into a sliding-mode
detector. The individual detection units for the inner and
outer raceway faults incorporate switching (sliding) surfaces
positioned at the projected fault directions . Without
loss of generality after scaling, the vectors representing the
fault directions, were found to be (1, 6) and (1, 2) for the outer
and inner raceway faults, respectively.

V. SIMULATION RESULTS

To test the proposed algorithms, simulation experiments for
the rub-impact model and the rolling element bearing model
have been conducted. We begin with a discussion of rub im-
pact given a single fault with different levels. The simulation
includes Fault 1, which is a loss of damping with three dif-
ferent levels. The simulation begins with the rotating machine
in the normal operating mode with the following set of param-
eters for the normalized model developed earlier:

, and . After operating in the
normal mode, Fault 1 is introduced by reducing the damping
in the system to . Then, Fault 1 Level 2 (F1 L2) is in-
troduced by further reducing the damping to . Finally,
Fault 1 Level 3 (F1 L3) is introduced by letting the damping drop
to . The normal operating mode lasts for 170 s (normal-
ized time), i.e., 26 revolutions, F1 and F1 L2 each last for 26 rev-
olutions, and F1 L3 lasts for 80 revolutions. When the damping
reduces to 0.02 (F1 L3), rubbing begins and quasi-periodic mo-
tion ensues. Multiple-model filters for selected modes of oper-

(a)

(b)

Fig. 8. (a) Outer raceway sliding model (healthy case). (b) Inner raceway
sliding model (healthy case).

ation, which include the Normal operating condition (N), Fault
1 condition (F1), Fault 1 Level 2 condition (F1 L2), and Fault 1
Level 3 condition (F1 L3) are implemented. The performance of
the observers, their sensitivity to different signal-to-noise ratios
(SNRs), and their robustness to uncertainty in the modeled dy-
namics are also investigated. The signal applied to the observers
has an SNR between5 dB and 5 dB, to model the influence
of sensor noise. The last observer for F1 L3 has(the defor-
mation exponent for the Hertzian restoring force) , and
(the coefficient of coulomb friction) , while the simulated
process has and . Hence, there is a mismatch
between the fault observers and the simulated process, a situa-
tion that will always exist in applications.
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(a)

(b)

Fig. 9. (a) Outer raceway sliding model excited by outer raceway fault. (b)
Inner raceway sliding model excited by outer raceway fault.

Fig. 4 shows the orbit plot, the Poincaré map of the orbit plot,
the phase plot, the Poincaré map of the phase plot, and the error
dynamics for the normal operating condition (N) as an example
for the performance of the linear observers. The performance
of the Kalman filters in the linear (normal operating) regime is
evident. It is also clear from Fig. 5 that the stochastic nonlinear
observers, in the presence of sensor noise and unmodeled dy-
namics, are capable of accurately reconstructing the nonlinear
orbit, the Poincaré map, and the phase plot. The nonlinear ob-
server error is given in Fig. 5(e) and (f). The F1 L3 observer

(a)

(b)

Fig. 10. (a) Outer raceway sliding model excited by inner raceway fault. (b)
Inner raceway sliding model excited by inner raceway fault.

error begins to converge at s, indicating that this ob-
server is tracking the true operating condition of the process.
The outputs of the fault observers are used as inputs to a non-
linear post processor, where the conditional probability for each
operating mode is computed. Figs. 6(a)–(d) and 7(a)–(d) illus-
trate the operation of the detection system for the N, F1, F1 L2,
and F1 L3 operating modes, respectively. The conditional prob-
ability of each operating mode takes values in the interval [0,
1], and the conditional probabilities are constrained to sum to
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one. An operating mode is detected when a conditional prob-
ability exceeds a given threshold, 0.9 in the examples given in
this paper. As is evident from the simulations, once a condi-
tional probability exceeds the threshold and the operating mode
of the process is determined, all of the fault filters are reinitial-
ized and the mode probabilities are reset to their initial values
(0.25 for this set of simulations). An advantage of the nonlinear
(multiple-model) filtering approach to fault detection discussed
in this paper is that mean time between failure (MTBF) statis-
tics can be used to reinitialize the mode probabilities after re-
setting. This can help the detection system decide between two
“similar” faults based on thea priori probability of their occur-
rence. The resetting also prevents “windup” in the fault filters
and enhances their ability to track abrupt changes (faults) in the
operating mode of the system.

Next, we discuss the detection and diagnosis of inner and
outer raceway faults in rolling element (ball) bearings. The de-
tection units include switching (sliding) surfaces that are posi-
tioned at the projected fault directions, . After scaling,
the vectors representing the fault directions were found to be (1,
6) and (1, 2) for the outer and inner raceway faults, respectively.

Fig. 8(a) and (b) illustrates the free response of the
sliding-mode detection units for outer and inner raceway faults,
respectively. The trajectories of both detection units chatter
to the origin (without deflection) once the sliding surface is
reached. Fig . 8(a) and (b) is typical of a healthy rotor-bearing
system where fault excitations are absent. In this case, it is
expected that the trajectories of each sliding mode detector will
converge to the origin along their respective sliding directions.

Figs. 9(a) and (b) and 10(a) and (b) show the behavior of
the sliding-mode detectors when driven by the scaled outer
and inner raceway fault residuals from the detection filter,
respectively. The trajectory of the matching fault model stays
along the sliding surface of that fault model, where the tra-
jectory of the other model tends to diverge from the surface,
eventually. This model-based scheme is capable of detecting
and diagnosing inner and outer raceway faults in rolling
element bearings. Because a ball fault can be represented as
a linear combination of an inner and an outer raceway fault,
the proposed scheme is also capable of detecting this fault
condition. However, it will not be possible to distinguish a
ball fault from a combined inner and outer raceway fault
condition. Finally, although not thoroughly tested, because the
sliding-mode detectors are invariant to disturbances along their
respective sliding surfaces, this model-based approach to roller
bearing fault detection should be robust to modeling errors,
sensor noise, and unknown disturbances.

VI. CONCLUSIONS

This paper has presented model-based techniques for the de-
tection and diagnosis of rotating machinery faults. A nonlinear
filtering approach was developed for a rub-impact model of a
rotating machine where unbalance, changes in the stiffness, and
damping of the rotor and bearing system, etc., can lead to a com-
plex nonlinear vibration response. The statistical filter incorpo-
rates a nonlinear post processor that generates conditional prob-
abilities that track the evolution of the fault modes in the system.
Simulations were used to illustrate the performance of the statis-

tical filters in a low signal-to-noise measurement environment.
Also, a fault detection filter in combination with a sliding-mode
detector is used to detect and isolate inner and outer raceway
faults in rolling element bearings. Simulation studies were used
to demonstrate the performance of the proposed detection and
diagnosis schemes. Results from laboratory and field testing of
the techniques developed in this paper are currently underway
and will be reported in a subsequent publication.
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