Lecture notes by Ethan Minot, visiting from Oregon State University ethan.minot@aalto.fi
Nanoelectronics Class at Aalto University, Autumn, 2021.

Philosophy of the course - examine electron transport phenomena in small conducting structures.

The structures could be made out of

1. Normal metal wires
2. Superconducting wires
3. Semiconductors
4. Molecules
5. Graphene
6. Topological insulators

- Many practical considerations determine what is possible
- Ingenious fabrication tricks continue to open new possibilities
(sometimes invented by physicists and often coming from outside physics)
- Text book (section 1.1) has a nice overview of what was possible in 2012. Continues to evolve.

Part 1: Fabrication techniques

- Standard tools in semiconductor industry?
- Pristine surfaces and interfaces?
- Structure be protected from environment?

Some case studies...

Kim et al. "Thermal transport measurements of individual multiwalled nanotubes" PRL 87, 215502 (2001)

- Silicon wafer
- Photo lituigraply
- Anisotropic etching
- Isotropic etching. eq. HF.

$$
\begin{aligned}
& \text { Need etch selectivity. } \\
& \text { egg. } \mathrm{SiO}_{2} \text { us } \mathrm{Sir}_{2} N_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Piggy back on } \\
& \text { MEMS technology. } \\
& \text { (industry techniques for } \\
& \text { making accelerometers) }
\end{aligned}
$$

Video from intel: The making of a chip with $22 \mathrm{~nm} / 3 \mathrm{D}$ Transistors

Lu et al. "Real-time detection of electron tunneling in a quantum dot" Nature 423422 (2003)

Angled evaporation
and controlled oxidation

> wafer

Greenwald et al. "Highly nonlinear transport across single-molecule junctions via destructive quantum interference" Nature Nanotechnology, 16313 (2021)

Gearor intines
 ramondibacion

Wang et al. "One-dimensional electrical contact to a two-dimensional material" Science 342, 614 (2013)

Van der Waals

Stack of materials.

Room temp mobility $140,000 \frac{\mathrm{~cm}^{2}}{\mathrm{~V} .5}$

Lotfizadeh et al. "Bandgap-dependent electronic compressibility of carbon nanotubes in the Wigner crystal regime" PRL 123197701 (2019)

$$
\begin{aligned}
\text { Suspended CNT... isolated from } \\
\text { the encironment. }
\end{aligned}
$$

Lecture notes by Ethan Minot, visiting from Oregon State University
ethan.minot@aalto.fi
Nanoelectronics Class at Aalto University, Autumn, 2021.

Part 2: Graphene properties
An instructive review of tight binding model from solid state physics + suprising hovel properties

Season 3, Episode 14, "The Einstein Approximation"

Each carbon atom: 6 protons, 6 electrons

Unit cell of the crystal structure

Unit cell of the crystal structure

A atom

Apply Bloch theorem and use linear combination of $2 p_{z}$ orbitals

$$
\psi_{\vec{k}}(\vec{r})=\sum_{i}\left(c_{1}^{(k)} \phi\left(\vec{r}-\vec{r}_{A_{i}}\right)+c_{2}^{(k)} \phi\left(\vec{r}-\vec{r}_{B_{i}}\right)\right) e^{i \vec{k} \cdot \vec{r}_{i}}
$$

Satisfies Bloch theorem $\psi(\vec{r})=e^{i \vec{k} \cdot \vec{r}} u(\vec{r})$

$$
u(\vec{r})=u(\vec{r}+\vec{R})
$$

any lattice rector

If I new $c_{1}^{\left(b_{1}\right)}$ \& $c_{2}^{\left(\vec{b}^{(}\right)}$, we could already calculate

$$
\begin{aligned}
E_{k}=\left\langle\psi_{b \vec{k}}(\vec{r})\right| & \hat{H}\left|\psi_{\vec{k}}(\vec{r})\right\rangle \\
& \frac{\hat{p}^{2}}{2 m}+V(\vec{r})
\end{aligned}
$$

Instead, we have to set up a system of equations that

Instead, we have to set up a system of equations that let us solve for $C_{1}^{(k)} \& C_{2}^{(k)}$

Let the LCAO wavefunction be represented by

$$
\psi_{\vec{k}}(\vec{r})=\left[\begin{array}{l}
c_{1}^{(\vec{k})} \\
c_{2}^{(\vec{r})}
\end{array}\right] \begin{array}{r}
\text { first basis state } \\
\psi_{\vec{k}}^{A}(\vec{r})=\frac{1}{\sqrt{N}} \sum_{i} e^{i \overrightarrow{\vec{b} \cdot} \cdot \vec{r}_{A_{i} i}} \phi\left(\vec{r}-\vec{r}_{A_{i}}\right)
\end{array}
$$

second basis state

$$
\psi_{k}^{B}(\vec{r})=\frac{1}{\sqrt{N}} \sum_{i} e^{i \vec{b} \cdot \vec{F}_{B, i}} \phi\left(\vec{r}-\vec{r}_{B: i}\right)
$$

Hamiltonian when the basis set has two functions (this 2×2 matrix is now a function of \vec{k}, because basis states change with \vec{k})

$$
H_{\vec{k}}=\left[\begin{array}{cc}
\left\langle\psi_{\vec{k}}^{A}\right| H\left|\psi_{\vec{k}}^{A}\right\rangle & \left\langle\psi_{\vec{k}}^{B}\right| H\left|\psi_{\vec{k}}^{A}\right\rangle \\
\left\langle\psi_{\vec{k}}^{A}\right| H\left|\psi_{\vec{k}}^{B}\right\rangle & \left\langle\psi_{\vec{k}}^{B}\right| H\left|\psi_{\vec{k}}^{B}\right\rangle
\end{array}\right]
$$

Note that A atoms have no A atom neigh bors, so diagonal terms $=E_{0}$, the unperturbed energy of $2 p_{z}$ orbital.

From now on weill set $E_{0}=0$ (defines our reference energy).

Evaluate off-diagnal elements

for given i there are 3 values of j that give non-zeroterms

$$
=\vec{k}\left(\vec{r}_{1}:-\vec{r}_{n}\right)=1 \vec{r}_{n}, \vec{\delta}_{n}
$$

 The non-zero terms will have $e^{i \vec{k}\left(\vec{r}_{A, i}-\vec{r}_{B, j}\right)}=e^{i \vec{k} \cdot \vec{\delta}_{l}}$

$$
\begin{aligned}
& \sum_{l=1}^{3} e^{i \vec{k}^{\cdot} \cdot \vec{\delta}_{l}} \underbrace{\int \underbrace{*}(\vec{r}) V(\vec{r}) \phi\left(\vec{r}-\delta_{1}\right) d^{3} \vec{r}}_{t \approx 2.7-3.0 \mathrm{eV}} \\
& \left.H_{\vec{k}}=\left[\begin{array}{cc}
0 \\
\left(t \sum_{l=1}^{3} e^{i l_{i} \cdot \delta_{l}}\right) *
\end{array}\right)\left(t \sum_{l=1}^{3} e^{i l_{i} \cdot \delta_{l}}\right)\right]=\left[\begin{array}{cc}
0 & \Delta_{k} \\
\Delta_{k}^{*} & 0
\end{array}\right] \\
& E_{\vec{k}}= \pm\left|\Delta_{\vec{k}}\right|
\end{aligned}
$$

$$
\left|\sum_{l} e^{i \vec{k}^{3} \cdot \vec{\delta}_{l}}\right|= \pm \sqrt{1+4 \cos \frac{\sqrt{3}}{2} k_{y} a \cos \frac{3}{2} k_{x} a+4 \cos ^{2} \frac{\sqrt{3}}{2} k_{y} a}
$$

Half available states in positive branch
where a is $c-C$ bond length.

Examine wave function near the "Dirac point", (momentum \vec{K}), where valance band meets conduction band. Let $\vec{k} \approx \vec{K}$ and look at states in the t and - branch of $\pm\left|\Delta_{k}\right|$.

$$
\frac{1}{\sqrt{N}} \sum_{i}\left(c_{1}^{(\vec{k}, \pm)} e^{i \vec{k} \cdot \vec{r}_{A, i}} \phi\left(\vec{r}-\vec{r}_{A, i}\right)+c_{2}^{(\vec{k}, \pm)} e^{i \vec{k} \cdot \vec{r}_{B, i}} \phi\left(\vec{r}-\vec{r}_{B, i}\right)\right)
$$

calculate these phase factors

This gives insight into the smooth cruss-over from valance to conduction at E_{F}.

Unique states with energies that approach equal value.

To learn more about the states near the Dirac point

Let $\vec{k}=\vec{K}+\stackrel{\rightharpoonup}{q} \quad$ where $\quad|\stackrel{\rightharpoonup}{q}| \ll|\vec{k}|$
keep terms in Hamiltonian that are linear in \vec{q}.

$$
H_{\vec{q}}=\text { const }\left[\begin{array}{cc}
0 & q_{x}-i q_{y} \\
q_{x}+i q_{y} & 0
\end{array}\right]
$$

Which has eigemalues $E= \pm$ cost $\sqrt{q_{x}^{2}+q_{y}^{2}}$

$$
\pm \hbar v_{F}\left|\vec{q}^{\prime}\right|
$$

velocity given by $\frac{1}{\hbar} \frac{d E}{d k}$
velocity given by $\frac{1}{\hbar} \frac{d E}{d k}$
v_{F} depends of t \& a

For fun, and possible new insights, recall the Pauli spin matrices

$$
\hat{\sigma}_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \hat{\sigma}_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

Then we can say

$$
\begin{aligned}
H_{\vec{q}} & =\hbar_{v_{r}}\left(q_{x} \hat{\sigma}_{x}+q_{y} \hat{\sigma}_{y}\right) \\
& =\hbar_{v_{F}} \vec{q} \cdot \overrightarrow{\hat{\sigma}}
\end{aligned}
$$

Like the Dirac Hamiltonian for an ultrarelativistic electron

$$
H=\hbar_{c}\left(\partial_{x} \hat{\sigma}_{x}+\partial_{y} \hat{\sigma}_{y}\right)
$$

speed of light
This Dirac Hamiltonian links the spin of an electron to the direction that it is traveling.

PSUEDO SPIN For an electron in graphene, the coefficients multiplying $\psi_{\vec{k}}^{A}$ \& $\psi_{\vec{k}}^{B}$ are known as the "pseudo spin".

The pseudospin is linked to the direction the electron is moving.

$$
\left[\begin{array}{c}
c_{1}^{(\vec{q})} \\
c_{2}^{(\vec{q})}
\end{array}\right]=\left[\begin{array}{c}
e^{i \frac{\theta_{\vec{\rightharpoonup}}}{2}} \\
\pm e^{-i \frac{\theta_{\vec{a}}}{2}}
\end{array}\right]
$$

$$
\theta_{\vec{q}}=\arctan \left(\frac{q_{y}}{q_{x}}\right)
$$

$$
q_{y} \uparrow
$$

$$
\left\lfloor c_{2}\right\rfloor \quad\left\lfloor \pm e^{\overline{2}}\right\rfloor
$$

 in cond/ral.

Backscatte-ing is suppressed because the psendospins of $\vec{q} \&-\vec{q}$ are orthogonal to each other.

$$
\left[c_{1}^{(\vec{q}) *} \quad c_{2}^{(\vec{q}) *}\right]\left[\begin{array}{l}
c_{1}^{(-\vec{q})} \\
c_{2}^{(-\vec{q})}
\end{array}\right]=0
$$

(2) Berry's Phase

aquires Berry's phase of π after traveling in circle.

This is on top of the dynamic phase and vector potential phase.

Changes the structure of Landon orbitals.

Summary
Why is grapuene in a class of its own.

Metals: Can't tune carrier density
Seunic: $E=\frac{p^{2}}{2 m}$
slow moving cold states at
band edge.
em

Grophere: Fast moving states at $E_{F}\left(\frac{c}{300}\right)$
Tune currier density.
Unique pseudo spin property.
\Rightarrow Mobility $140,000 \frac{\mathrm{~cm}^{2}}{V \cdot 5}$ at room temp.

