1. Theoretical exercises

Demo exercises

1.1 Let \boldsymbol{A} be a real valued 2×2-matrix and let $\boldsymbol{x}, \boldsymbol{b} \in \mathbb{R}^{2}$,

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

(a) Write explicitly $\boldsymbol{A}^{\top}, \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}^{\top} \boldsymbol{A}$ and $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}$.

Solution.

$$
\begin{array}{rlrl}
\boldsymbol{A}^{\top} & =\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right], & \boldsymbol{A}^{\top} \boldsymbol{A}=\left[\begin{array}{cc}
a_{11}^{2}+a_{21}^{2} & a_{11} a_{12}+a_{21} a_{22} \\
a_{11} a_{12}+a_{21} a_{22} & a_{12}^{2}+a_{22}^{2}
\end{array}\right], \\
\boldsymbol{A} \boldsymbol{x} & =\left[\begin{array}{ll}
a_{11} x_{1}+a_{12} x_{2} \\
a_{21} x_{1}+a_{22} x_{2}
\end{array}\right], & \boldsymbol{x}^{\top} \boldsymbol{A}=\left[\begin{array}{ll}
a_{11} x_{1}+a_{21} x_{2} & a_{12} x_{1}+a_{22} x_{2},
\end{array}\right] \\
\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} & =a_{11} x_{1}^{2}+\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{2}^{2} & &
\end{array}
$$

(b) Verify that $\frac{\partial\left(\boldsymbol{b}^{\top} \boldsymbol{x}\right)}{\partial \boldsymbol{x}}=\frac{\partial\left(\boldsymbol{x}^{\top} \boldsymbol{b}\right)}{\partial \boldsymbol{x}}=\boldsymbol{b}^{\top}$.

Solution. Since,

$$
\boldsymbol{b}^{\top} \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{b}=b_{1} x_{1}+b_{2} x_{2},
$$

and

$$
\left[\frac{\partial}{\partial x_{1}}\left(b_{1} x_{1}+b_{2} x_{2}\right) \frac{\partial}{\partial x_{2}}\left(b_{1} x_{1}+b_{2} x_{2}\right)\right]=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]=\boldsymbol{b}^{\top},
$$

which proves the claim. Note that the result can be generalized for \mathbb{R}^{n}-vectors.
(c) Verify that $\frac{\partial\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right)}{\partial \boldsymbol{x}}=2 \boldsymbol{x}^{\top}$

Solution. The claim follows by taking the derivatives from,

$$
\boldsymbol{x}^{\top} \boldsymbol{x}=x_{1}^{2}+x_{2}^{2} .
$$

Note that the result can be generalized for \mathbb{R}^{n}-vectors.
(d) Verify that $\frac{\partial(\boldsymbol{A} \boldsymbol{x})}{\partial \boldsymbol{x}}=\boldsymbol{A}$.

Solution.

$$
\frac{\partial(\boldsymbol{A} \boldsymbol{x})}{\partial \boldsymbol{x}}=\frac{\partial}{\partial \boldsymbol{x}}\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2} \\
a_{21} x_{1}+a_{22} x_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial}{\partial x_{1}}\left(a_{11} x_{1}+a_{12} x_{2}\right) & \frac{\partial}{\partial x_{2}}\left(a_{11} x_{1}+a_{12} x_{2}\right) \\
\frac{\partial}{\partial x_{1}}\left(a_{21} x_{1}+a_{22} x_{2}\right) & \frac{\partial}{\partial x_{2}}\left(a_{21} x_{1}+a_{22} x_{2}\right)
\end{array}\right]=\boldsymbol{A} .
$$

Note that the result can be generalized for \mathbb{R}^{n}-vectors and $\mathbb{R}^{m \times n}$-matrices.
(e) Verify that $\frac{\partial\left(\boldsymbol{x}^{\top} A\right)}{\partial \boldsymbol{x}}=\boldsymbol{A}^{\top}$.

Solution.

$$
\begin{aligned}
\frac{\partial\left(\boldsymbol{x}^{\top} \boldsymbol{A}\right)}{\partial \boldsymbol{x}} & =\frac{\partial}{\partial \boldsymbol{x}}\left[\begin{array}{ll}
a_{11} x_{1}+a_{21} x_{2} & \left.a_{12} x_{1}+a_{22} x_{2}\right] \\
& =\left[\begin{array}{ll}
\frac{\partial}{\partial x_{1}}\left(a_{11} x_{1}+a_{21} x_{2}\right) & \frac{\partial}{\partial x_{2}}\left(a_{11} x_{1}+a_{21} x_{2}\right) \\
\frac{\partial}{\partial x_{1}}\left(a_{12} x_{1}+a_{22} x_{2}\right) & \frac{\partial}{\partial x_{2}}\left(a_{12} x_{1}+a_{22} x_{2}\right)
\end{array}\right]=\boldsymbol{A}^{\top} .
\end{array} .\right.
\end{aligned}
$$

Note that the result can be generalized for \mathbb{R}^{n}-vectors and $\mathbb{R}^{n \times n}$-matrices.
(f) Verify that $\frac{\partial\left(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\right)}{\partial \boldsymbol{x}}=\boldsymbol{x}^{\top}\left(\boldsymbol{A}+\boldsymbol{A}^{\top}\right)$.

Solution.

$$
\begin{aligned}
\frac{\partial\left(\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\right)}{\partial \boldsymbol{x}} & =\left[\begin{array}{ll}
\frac{\partial}{\partial x_{1}}\left(a_{11} x_{1}^{2}+\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{2}^{2}\right) & \frac{\partial}{\partial x_{2}}\left(a_{11} x_{1}^{2}+\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{2}^{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 a_{11} x_{1}+\left(a_{12}+a_{21}\right) x_{2} & \left(a_{12}+a_{21}\right) x_{1}+2 a_{22} x_{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
a_{11} x_{1}+a_{12} x_{2} & a_{21} x_{1}+a_{22} x_{2}
\end{array}\right]+\left[\begin{array}{ll}
a_{11} x_{1}+a_{21} x_{2} & a_{12} x_{1}+a_{22} x_{2}
\end{array}\right] \\
& =\boldsymbol{x}^{\top} \boldsymbol{A}^{\top}+\boldsymbol{x}^{\top} \boldsymbol{A}=\boldsymbol{x}^{\top}\left(\boldsymbol{A}+\boldsymbol{A}^{\top}\right) .
\end{aligned}
$$

Note that the result can be generalized for \mathbb{R}^{n}-vectors and $\mathbb{R}^{n \times n}$-matrices.
Remark: consider a vector valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, that is smooth enough,

$$
f(\boldsymbol{x})=\left[\begin{array}{c}
f_{1}(\boldsymbol{x}) \\
f_{2}(\boldsymbol{x}) \\
\vdots \\
f_{m}(\boldsymbol{x})
\end{array}\right], \quad \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

The derivative of the function is

$$
\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}=\left[\begin{array}{cccc}
\frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{1}} & \frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{n}} \\
\frac{\partial f_{2}(\boldsymbol{x})}{\partial x_{1}} & \frac{\partial f_{2}(\boldsymbol{x})}{\partial x_{2}} & \cdots & \frac{\partial f_{2}(\boldsymbol{x})}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}(\boldsymbol{x})}{\partial x_{1}} & \frac{\partial f_{m}(\boldsymbol{x})}{\partial x_{2}} & \cdots & \frac{\partial f_{m}(\boldsymbol{x})}{\partial x_{n}}
\end{array}\right] .
$$

1.2 Consider the linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where $\mathbf{y}, \boldsymbol{\varepsilon} \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times(k+1)}$ and $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$. Let the standard assumptions (i)-(v), given in the lecture slides, hold.
a) Show that the least squares (LS) estimator for the vector $\boldsymbol{\beta}$ is $\mathbf{b}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$.
b) Show that \mathbf{b} is unbiased, that is, $\mathbb{E}[\mathbf{b}]=\boldsymbol{\beta}$.
c) Show that $\operatorname{Cov}(\mathbf{b})=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$.

Solution.

a) The sum of squares is,

$$
f(\boldsymbol{\beta})=\boldsymbol{\varepsilon}^{\top} \boldsymbol{\varepsilon}=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\mathbf{y}^{\top} \mathbf{y}-2 \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{y}+\boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}
$$

The LS-estimator for the vector $\boldsymbol{\beta}$ is obtained by minimizing the sum of squares $f(\boldsymbol{\beta})$ with respect to the vector $\boldsymbol{\beta}$. By differentiating $f(\boldsymbol{\beta})$ with respect to $\boldsymbol{\beta}$ and setting the derivative equal to zero, we obtain,

$$
f^{\prime}(\boldsymbol{\beta})=-2 \mathbf{y}^{\top} \mathbf{X}+2 \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X}=\mathbf{0}
$$

By the standard assumptions, we have that $\operatorname{rank}(\mathbf{X})=k+1$, which implies that the matrix $\mathbf{X}^{\top} \mathbf{X}$ is nonsingular and $\boldsymbol{\beta}$ is solvable. The solution,

$$
\mathbf{b}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

minimizes the function $f(\boldsymbol{\beta})$, since $\mathbf{X}^{\top} \mathbf{X}$ is always a positive definite matrix and,

$$
f^{\prime \prime}(\boldsymbol{\beta})=2 \mathbf{X}^{\top} \mathbf{X}
$$

b) Note that,

$$
\mathbf{b}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon})=\boldsymbol{\beta}+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{\varepsilon}
$$

Since the vector $\boldsymbol{\beta}$ and the matrix \mathbf{X} are non-random, it follows that,

$$
\mathbb{E}[\mathbf{b}]=\mathbb{E}[\boldsymbol{\beta}]+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbb{E}[\boldsymbol{\varepsilon}]=\boldsymbol{\beta}+\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{0}=\boldsymbol{\beta}
$$

c) Using part (b), we obtain,

$$
\mathbf{b}-\mathbb{E}[\mathbf{b}]=\mathbf{b}-\boldsymbol{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{\varepsilon}
$$

Then, since \mathbf{X} is non-random,

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{b}) & =\mathbb{E}\left[(\mathbf{b}-\mathbb{E}[\mathbf{b}])(\mathbf{b}-\mathbb{E}[\mathbf{b}])^{\top}\right] \\
& =E\left[\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \boldsymbol{\varepsilon} \varepsilon^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right] \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbb{E}\left[\boldsymbol{\varepsilon} \varepsilon^{\top}\right] \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\left(\sigma^{2} \mathbf{I}\right) \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} .
\end{aligned}
$$

Homework

1.3 Consider the linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where $\mathbf{y}, \boldsymbol{\varepsilon} \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times(k+1)}$ and $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$. Let the standard assumptions (i)-(v), given in the lecture slides, hold. Let $\mathbf{M}=\mathbf{I}-$ $\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$ and recall that $\operatorname{rank}(\mathbf{M})=n-(k+1)$.
a) Let \mathbf{e} be the estimated residual vector, that is, $\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}$. Use the results obtained in previous exercises to show that

$$
\operatorname{Cov}(\mathbf{e})=\sigma^{2} \mathbf{M}
$$

b) Use previous exercises and part (a), and show that,

$$
s^{2}=\frac{1}{n-k-1} \sum_{i=1}^{n} e_{i}^{2},
$$

is an unbiased estimator for $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$, that is, show that $\mathbb{E}\left[s^{2}\right]=\sigma^{2}$.
Hint. (1) The trace of a square matrix equals the sum of the corresponding eigenvalues, and, (2) the eigenvalues of an idempotent matrix are either 0 or 1. (You are not expected to prove results (1)-(2) in this exercise.)

