Notes - Theoretical exercises 1

November 3, 2021

Notice that deadlines for homework are on Sunday 22:00!

Exercise 1.1

a)

- $(A B)^{T}=B^{T} A^{T}$ and $\left(A^{T}\right)^{T}=A$. Thus

$$
x^{T} A=\left(\left(x^{T} A\right)^{T}\right)^{T}=\left(A^{T} x\right)^{T} .
$$

- Remember that $(A B) C=A(B C)$. Thus $\left(x^{T} A\right) x=x^{T}(A x)$.

Exercise 1.2

a)

$$
\begin{aligned}
f(\beta) & =\varepsilon^{T} \varepsilon=(y-X \beta)^{T}(y-X \beta)=\left(y^{T}-\beta^{T} X^{T}\right)(y-X \beta) \\
& =y^{T} y-y^{T} X \beta-\beta^{T} X^{T} y+\beta^{T} X^{T} X \beta .
\end{aligned}
$$

Remember that $x^{T} y=y^{T} x$. Then $y^{T} X \beta=(X \beta)^{T} y=\beta^{T} X^{T} y$ and thus

$$
f(\beta)=y^{T} y-2 \beta^{T} X^{T} y+\beta^{T} X^{T} X \beta
$$

Now

$$
\begin{aligned}
& \frac{\partial y^{T} y}{\partial \beta}=0 \\
& \frac{\partial\left(-2 \beta^{T} X^{T} y\right)}{\partial \beta}=-2 \frac{\partial \beta^{T}\left(X^{T} y\right)}{\partial \beta} \stackrel{1.1 b)}{=}-2\left(X^{T} y\right)^{T}=-2 y^{T} X \quad \text { and } \\
& \frac{\partial \beta^{T}\left(X^{T} X\right) \beta}{\partial \beta} \stackrel{1.1 f)}{=} \beta^{T}(X^{T} X+\underbrace{\left(X^{T} X\right)^{T}}_{=X^{T} X})=2 \beta^{T} X^{T} X .
\end{aligned}
$$

Then we get

$$
f^{\prime}(\beta)=-2 y^{T} X+2 \beta^{T} X^{T} X .
$$

By setting $f^{\prime}(\beta)=0$ we get

$$
\begin{aligned}
& \beta^{T} X^{T} X=y^{T} X \\
& \Rightarrow X^{T} X \beta=X^{T} y \\
& \Rightarrow \beta=\left(X^{T} X\right)^{-1} X^{T} y .
\end{aligned}
$$

In order to prove that $b=\left(X^{T} X\right)^{-1} X^{T} y$ is minimum we have to prove that $f^{\prime \prime}(\beta)=X^{T} X$ is symmetric positive definite. Let $a \in \mathbb{R}^{k+1} \backslash\{0\}$. Denote

$$
\begin{aligned}
& a=\left(a_{1} \ldots a_{k+1}\right)^{T} \text { and } \\
& X=\left(x_{1} \ldots x_{k+1}\right),
\end{aligned}
$$

where $x_{i} \in \mathbb{R}^{k+1}$ are the column vectors of X. We have that vector $\sum_{i=1}^{k+1} a_{i} x_{i}$ is always not equal to zero since vectors x_{i} are linearly independent. Then

$$
a^{T}\left(X^{T} X\right) a=(X a)^{T} X a=\|X a\|^{2}=\left\|\sum_{i=1}^{k+1} a_{i} x_{i}\right\|^{2}>0 .
$$

Thus $X^{T} X$ is positive definite.
b)

$$
b=\left(X^{T} X\right)^{-1} X^{T}(X \beta+\varepsilon)=\underbrace{\left(X^{T} X\right)^{-1} X^{T} X}_{=I} \beta+\left(X^{T} X\right)^{-1} X^{T} \varepsilon=\beta+\left(X^{T} X\right)^{-1} X^{T} \varepsilon
$$

Thus

$$
\mathbb{E}(b)=\mathbb{E}(\beta)+\left(X^{T} X\right)^{-1} X^{T} \mathbb{E}(\varepsilon)=\beta
$$

c) By part b),

$$
b-\mathbb{E}(b)=b-\beta=\beta+\left(X^{T} X\right)^{-1} X^{T} \varepsilon-\beta=\left(X^{T} X\right)^{-1} X^{T} \varepsilon
$$

Also, notice that

$$
\mathbb{E}\left(\varepsilon \varepsilon^{T}\right)=\mathbb{E}((\varepsilon-\underbrace{\mathbb{E} \varepsilon}_{=0})(\varepsilon-\underbrace{\mathbb{E} \varepsilon}_{=0})^{T})=\operatorname{cov}(\varepsilon)=\sigma^{2} I,
$$

and remember that $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$. Then

$$
\begin{aligned}
\operatorname{cov}(b) & =\mathbb{E}\left((b-\mathbb{E} b)(b-\mathbb{E} b)^{T}\right)=\mathbb{E}\left(\left(\left(X^{T} X\right)^{-1} X^{T} \varepsilon\right)\left(\left(X^{T} X\right)^{-1} X^{T} \varepsilon\right)^{T}\right) \\
& =\mathbb{E}\left(\left(X^{T} X\right)^{-1} X^{T} \varepsilon \varepsilon^{T} X\left(X^{T} X\right)^{-1}\right)=\left(X^{T} X\right)^{-1} X^{T} \mathbb{E}\left(\varepsilon \varepsilon^{T}\right) X\left(X^{T} X\right)^{-1} \\
& =\left(X^{T} X\right)^{-1} X^{T}\left(\sigma^{2} I\right) X\left(X^{T} X\right)^{-1}=\sigma^{2}\left(X^{T} X\right)^{-1} \underbrace{\left(X^{T} X\right)\left(X^{T} X\right)^{-1}}_{=I} \\
& =\sigma^{2}\left(X^{T} X\right)^{-1}
\end{aligned}
$$

Exercise 1.3 (Homework)

a)

- Use properties of projection matrices. That is,

$$
M^{T}=M \text { and } M^{2}=M
$$

- Use linearity of expectation.
- Write e in terms of matrix M.
- First calculate $\operatorname{cov}(y)$. It will be useful in calculating $\operatorname{cov}(e)$.
b)
- First compute $\mathbb{E}(e)$. Then find relation between trace $(\operatorname{cov}(e))$ and $\mathbb{E}\left(\sum_{i=1}^{n} e_{i}^{2}\right)$.
- Let $A \in \mathbb{R}^{n \times n}$. Then trace is defined as $\operatorname{trace}(A)=\sum_{i=1}^{n} a_{i i}$
- $\operatorname{trace}(c A)=c \operatorname{trace}(A), c \in \mathbb{R}$.
- For square matrices, Rank is equal to the number of nonzero eigenvalues.

