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Exercise 2.

2. Computer exercises

Demo exercises

2.1 Continuation of the homework.

a) Generate a scatter plot (CONSUMPTION, ILL). Add the estimated regression line
to the figure.

b) Determine the fitted values ŷ and estimated residuals e from the corresponding model
and assign them to variables FIT and RES, respectively.

c) Generate scatter plots (ILL, FIT) and (FIT, RES).

d) Study whether the observation 7=USA is an outlier by using the plots of part (c).

e) Study whether the observation 7=USA is an outlier by using Cook’s distances.

f) Estimate the model without the observation USA. Compare the results with the
homework assignment of the previous week.

Solution.

smoking <- read.table("tobacco.txt",header=T,sep="\t")
model <- lm(ILL~CONSUMPTION,data=smoking)
countries <- c("Iceland","Norway","Sweden","Canada","Denmark",

"Austria","USA","Netherlands","Switzerland","Finland",
"England")

a) Scatter plot (Figure 1):

plot(smoking$CONSUMPTION,smoking$ILL, ylab="Cases in 1950",
xlab="CONSUMPTION in 1930", pch=16,
main="CONSUMPTION/ILL per 100 000 individuals")

abline(model,col="red")
text(smoking$CONSUMPTION, smoking$ILL, labels=countries, cex= 0.8,

pos=3)

Alternatively, you can use the function identify to label the observations.
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Figure 1: Scatter plot of CONSUMPTION and ILL.

b) The fitted values and the estimated residuals correspond to fitted.values and
residuals from the estimated model, and they can be accessed by

FIT <- model$fit
RES <- model$res

c) Scatter plot (observed values, fitted values) (Figure 2).
Plot the fitted values ŷi against the observed values of the variable ILL.

plot(smoking$ILL,FIT, ylab="Fits",xlab="Sick",pch=16)
text(smoking$ILL,FIT, labels = ifelse(rownames(smoking)=="7",

countries, NA),pos=2)
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Figure 2: Scatter plot of the observed values and the fitted values.

The scatter plot illustrates the goodness of the model:

• The closer the points (yi, ŷi), i = 1, 2, ..., n are to the line with slope of 1, the
better the model is.
• Outliers are usually visible.

Note that, the squared Pearson correlation coefficient given by the points (yi, ŷi), i =
1, 2, ..., n is equal to the coefficient of determination:

[Cor(y, ŷ)]2 = R2.

Scatter plot (fitted values, residuals) (Figure 3). Plot the residuals ei against the
fitted values ŷi.

plot(FIT,RES, xlab="Fits",ylab="Residuals",pch=16)
text(FIT,RES, labels = ifelse(rownames(smoking)=="7",

countries, NA),pos=3)
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Figure 3: Scatter plot of the fitted values and the residuals.

The scatter plot illustrates the goodness of the model:

• The closer the points (ŷi, ei), i = 1, 2, ..., n are to the line e = 0, the better the
model is.
• Outliers are usually visible.

d) Especially, by the scatter plot (FIT,RES), the observation 7=USA looks like an
outlier.

e) Assign the Cook’s distances to cooksd and plot the distances. See Figure 4.

cooksd <- cooks.distance(model)
x <-plot(cooksd,xaxt="n",xlab=" ",ylab="Cook’s distances")
axis(side=1,at=1:11, labels=countries,las=2 )
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Figure 4: Cook’s distances of the model.

f) Estimate the model without the observation 7=USA.

smoking2 <- smoking[-7,]
model2 <- lm(ILL~CONSUMPTION,data=smoking2)
summary(model2)

Residuals:
Min 1Q Median 3Q Max

-62.353 -28.923 -7.861 35.321 66.919

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.55343 28.26713 0.479 0.644
CONSUMPTION[-7] 0.35767 0.04547 7.867 4.93e-05 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 44.92 on 8 degrees of freedom
Multiple R-squared: 0.8855,Adjusted R-squared: 0.8712
F-statistic: 61.88 on 1 and 8 DF, p-value: 4.928e-05
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Compared to the first homework assignment, the estimate for the slope has increased
from 0.23 to 0.36. This implies a stronger linear dependence between lung cancer
cases and consumption of cigarettes among the remaining observations (countries).
Question: Can we remove the observation 7=USA?
Answer: During the corresponding time period, tobacco was milder in the USA,
when compared to the other countries of the study. Furthermore, the cigarettes sold
in the USA had filters, whereas the cigarettes sold in the other countries did not
have filters.
As we have found a contextual explanation, the observation USA can be
regarded as an outlier and its removal from the data is justified. Remem-
ber that disregarding data without valid explanations is not allowed!

2.2 When cement hardens, heat is produced. The amount of heat depends on the composi-
tion of the cement. From file hald.txt, you can find the following information regarding
13 different batches of cement:

HEAT =heat energy (cal/g)
CHEM1, CHEM2, CHEM3, CHEM4 =ingredients of cement (% of the dry substance)

a) Estimate a linear regression model with all explanatory variables. Compare statis-
tical significances of the regression coefficients and examine the variance inflation
factors of the corresponding explanatory variables.

b) Find the best combination of explanatory variables by using Akaike information
criterion (AIC).

Solution. The goal of the exercise is to find out which of the explanatory variables
CHEM1, CHEM2, CHEM3, CHEM4 are significant in explaining the behavior of the
response variable HEAT.

First, we import the data and install the package car for later use.

install.packages("car")
library(car)
hald=read.table("hald.txt",header=T)

a) Estimation of the full model
In situations, where it is not known which of the explanatory variables affect the
response variable, it is first usually reasonable to estimate the full model, i.e. the
model with all candidates for explanatory variables.
First, we should examine the correlations between the different variables.
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cor(hald)
CHEM1 CHEM2 CHEM3 CHEM4 HEAT

CHEM1 1.00000000 0.2285795 -0.8241338 -0.2454451 0.7307175
CHEM2 0.22857947 1.0000000 -0.1392424 -0.9729550 0.8162526
CHEM3 -0.82413376 -0.1392424 1.0000000 0.0295370 -0.5346707
CHEM4 -0.24544511 -0.9729550 0.0295370 1.0000000 -0.8213050
HEAT 0.73071747 0.8162526 -0.5346707 -0.8213050 1.0000000
SUM 0.05010722 -0.2604492 -0.1102512 0.3290769 -0.1645805
SUM
0.05010722
-0.26044918
-0.11025122
0.32907694
-0.16458053
1.00000000

The variable HEAT correlates strongly with all explanatory candidates. Correla-
tion is positive with the variables CHEM1 and CHEM2, and negative with CHEM3
and CHEM4. There is a strong negative correlation between variables CHEM1 and
CHEM3, as well as between variables CHEM2 and CHEM4.
We begin by estimating the full model:

HEAT = β0 + β1CHEM1+ β2CHEM2+ β3CHEM3+ β4CHEM4+ ε (1)

fullmodel=lm(HEAT~CHEM1+CHEM2+CHEM3+CHEM4,data=hald)
summary(fullmodel)

Residuals:
Min 1Q Median 3Q Max

-3.1750 -1.6709 0.2508 1.3783 3.9254

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.4054 70.0710 0.891 0.3991
CHEM1 1.5511 0.7448 2.083 0.0708 .
CHEM2 0.5102 0.7238 0.705 0.5009
CHEM3 0.1019 0.7547 0.135 0.8959
CHEM4 -0.1441 0.7091 -0.203 0.8441
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 2.446 on 8 degrees of freedom
Multiple R-squared: 0.9824,Adjusted R-squared: 0.9736
F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07
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The model (1) has a high coefficient of determination (98.2%). The value of the
F-test statistics for the null hypothesis

H0 : β1 = β2 = β3 = β4 = 0

is 111.5 and the p-value is close to zero, i.e. the model is statistically significant and
at least one of the regression coefficients β0, β1, β2, β3 deviates from zero.
However, none of the explanatory variables of the model (1) is statistically signif-
icant with a 5%:n level of significance. This is due to the multicollinearity of the
explanatory variables.
Multicollinearity of the explanatory variables can be measured with VIF-coefficients.
The VIF-coefficient is 1 for an explanatory variable whose sample correlation is 0
with other explanatory variables. The stronger a variable is linearly dependent on
the other variables, the larger the VIF-coefficient of the variable is. If

VIF > 10,

then multicollinearity might be a problem.
VIF-coefficients can be computed with the function vif of the package car.

vif(fullmodel)
CHEM1 CHEM2 CHEM3 CHEM4

38.49621 254.42317 46.86839 282.51286

In model (1), the VIF-coefficients of the variables CHEM2 and CHEM4 are larger
than 200, which indicates that strong multicollinearity is present in the model.
Next, we further study the existing multicollinearity by estimating two regression
models, where CHEM2 and CHEM4 are explained with all the other explanatory
variables of the original model (1).
Consider the model:

CHEM2 = α0 + α1CHEM1+ α3CHEM3+ α4CHEM4+ δ, (2)

which can be estimated using,

model2 <- lm(CHEM2 ~ CHEM1+CHEM3+CHEM4,data=hald)
summary(model2)

Residuals:
Min 1Q Median 3Q Max

-2.2494 -0.7280 0.3881 0.7033 0.9512

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 96.59382 2.16253 44.67 7.06e-12 ***
CHEM1 -0.97860 0.10602 -9.23 6.94e-06 ***
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CHEM3 -1.00350 0.09443 -10.63 2.15e-06 ***
CHEM4 -0.97759 0.02111 -46.30 5.12e-12 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 1.126 on 9 degrees of freedom
Multiple R-squared: 0.9961,Adjusted R-squared: 0.9948
F-statistic: 760.3 on 3 and 9 DF, p-value: 3.864e-11

The coefficient of determination of the model is 99.6% implying that CHEM2 is
strongly linearly dependent on the other explanatory variables. Note that the VIF-
coefficient of CHEM2 in the model (1) is

VIF2 =
1

1−R2
2

,

where R2
2 is the coefficient of determination for model (2).

Consider the model,

CHEM4 = α0 + α1CHEM1+ α2CHEM2+ α3CHEM3+ δ, (3)

which can be estimated using,

Call:
lm(formula = CHEM4 ~ CHEM1 + CHEM2 + CHEM3)

Residuals:
Min 1Q Median 3Q Max

-2.3264 -0.6836 0.4439 0.7463 1.0379

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 98.65079 1.94627 50.687 2.27e-12 ***
CHEM1 -1.00504 0.10175 -9.878 3.96e-06 ***
CHEM2 -1.01865 0.02200 -46.303 5.12e-12 ***
CHEM3 -1.02809 0.09187 -11.191 1.39e-06 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 1.15 on 9 degrees of freedom
Multiple R-squared: 0.9965,Adjusted R-squared: 0.9953
F-statistic: 844.5 on 3 and 9 DF, p-value: 2.413e-11

The coefficient of determination of the model is 99.7% implying that CHEM4 is
strongly linearly dependent on the other explanatory variables.
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Note that the VIF-coefficient of CHEM4 in the model (1) is

VIF4 =
1

1−R2
3

,

where R2
3 is the coefficient of determination of the model (3).

Multicollinearity of the model (1) is explained by noting that cement consists almost
entirely of the substances CHEM1, CHEM2, CHEM3 and CHEM4. The sum of these
variables is somewhere between 95-99%. Therefore, by increasing the amount of a
substance, we have to reduce the amount of some other substances in the mixture.
This explains the strong negative correlations between the variable pairs (CHEM1,
CHEM3) and (CHEM2, CHEM4).

b) The best combination of explanatory variables
There exists different strategies for choosing the explanatory variables of a regression
model. When searching for the best combination of explanatory variables, different
models are compared to each other by using some criterion for model selection.
Some well-known criteria for model selection are, e.g., Akaike information criterion
(AIC), Schwarz bayesian information criterion (SBIC) and Hannan-Quinn criterion
(HQ).
The criterion functions of model selection methods are of the form,

min
M⊆(1,...,q)

C(|M |, σ̂2
M),

where M is a combination of explanatory variables and σ̂2
|M | is the maximum like-

lihood estimator for the variance of the residuals of the corresponding model. Fur-
thermore, C is an increasing function with respect to the two arguments. In general,
we expect the following from a criterion function:

• Maximal coefficient of determination,
• Using as few explanatory variables as possible.

In R, the function step() gives the combination of explanatory variables that min-
imizes the value of AIC. Note that step() computes AIC by assuming normally
distributed residuals.

step(fullmodel)

Start: AIC=26.94
HEAT ~ CHEM1 + CHEM2 + CHEM3 + CHEM4

Df Sum of Sq RSS AIC
- CHEM3 1 0.1091 47.973 24.974
- CHEM4 1 0.2470 48.111 25.011
- CHEM2 1 2.9725 50.836 25.728
<none> 47.864 26.944
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- CHEM1 1 25.9509 73.815 30.576

Step: AIC=24.97
HEAT ~ CHEM1 + CHEM2 + CHEM4

Df Sum of Sq RSS AIC
<none> 47.97 24.974
- CHEM4 1 9.93 57.90 25.420
- CHEM2 1 26.79 74.76 28.742
- CHEM1 1 820.91 868.88 60.629

Call:
lm(formula = HEAT ~ CHEM1 + CHEM2 + CHEM4, data = hald)

Coefficients:
(Intercept) CHEM1 CHEM2 CHEM4

71.6483 1.4519 0.4161 -0.2365

The output can be interpreted as follows. The AIC of the full model is 26.944. When
CHEM3 is omitted from the model, the AIC is 24.974. When CHEM4 is omitted,
the AIC is 25.011. When CHEM2 is omitted, the AIC is 25.728 and when CHEM1
is omitted, the AIC is 30.576. We wish to minimize the model selection criterion and
hence, we estimate the model without CHEM3.
Consider the model,

HEAT = β0 + β1CHEM1+ β2CHEM2+ β4CHEM4. (4)

Now the AIC of model (4) is 24.974. From the output of R, we see that omitting any
of the remaining explanatory variables (CHEM1, CHEM2, CHEM4) would increase
the AIC value. Next, we estimate the model (4).

model4 <- lm(HEAT ~ CHEM1 + CHEM2 + CHEM4 , data=hald)
summary(model4)

Residuals:
Min 1Q Median 3Q Max

-3.0919 -1.8016 0.2562 1.2818 3.8982

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.6483 14.1424 5.066 0.000675 ***
CHEM1 1.4519 0.1170 12.410 5.78e-07 ***
CHEM2 0.4161 0.1856 2.242 0.051687 .
CHEM4 -0.2365 0.1733 -1.365 0.205395
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.309 on 9 degrees of freedom
Multiple R-squared: 0.9823,Adjusted R-squared: 0.9764
F-statistic: 166.8 on 3 and 9 DF, p-value: 3.323e-08

Note that the variables CHEM2 and CHEM4 are not statistically significant with 5%
significance level. Figure 5 illustrates the estimated residuals of the full model. The
shape of the histogram indicates that the normality assumption does not hold, which
on the other hand means that AIC is not a reliable method for model selection. In
homework assignment 2.3, the model selection is done using the permutation test.
The permutation test does not require normality and thus, it is the safer alternative
here.

Residuals of the full model
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Figure 5: The residuals of the full model.

Remark: It is not possible to use the error sum of squares or the coefficient of
determination as a criterion for model selection, since minimizing the error sum of
squares as well as maximizing the coefficient of determination always leads to the
full model (the model with all possible explanatory variables).
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Homework

2.3 Continuation to Exercise 2.2. Use backward elimination to choose the model. Perform
the backward elimination using the permutation test. You may utilize lecture slides and
demo exercises of the previous week. Compare results with part (b) of Problem 2.2. Use
level of significance α = 5%.

In backward elimination, the first step is to estimate the full model and examine statis-
tical significance of the explanatory variables. The least significant variable is removed
from the model and after that, a new model is estimated. Variables are removed from
the model one at a time, until all remaining variables are statistically significant.

2.4 The quantity of a fertilizer affects the yield of wheat. The effect was studied by altering
the quantity of the fertilizer (11 levels) in 33 different cultivations (the same amount of
fertilizer in 3 cultivations) and by measuring the yield of each cultivation. Results of
the study are given in the file crop.txt. The variables are,

Yield = Yield (kg/unit of area)
Fertilizer = the amount of the fertilizer (kg/unit of area)

a) Estimate a linear regression model, where Yield is a response variable and Fertilizer
is an explanatory variable. Using regression graphics, study whether the model is
sufficient.

b) Estimate a linear regression model, where you have added the explanatory variable

LSqrd = Fertilizer · Fertilizer

to the model of the part a). That is, LSqrd consists of the squared elements of the
variable Fertilizer. Using regression graphics, study whether the model is sufficient.

c) Compare the results obtained in parts a) and b). Which of the models is more
suitable here?
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