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Exercise 2.

2. Theoretical exercises

Demo exercises

2.1 Prove the Gauss-Markov theorem.

Solution. Let the standard assumptions (i)-(v) of the lecture slides be satisfied. Under
the standard assumptions, Gauss-Markov theorem states that the least squares estima-
tor,

b = (X>X)−1X>y,

is the best linear unbiased estimator (BLUE) for the regression coefficients β. In this
context, the best estimator is the estimator with the smallest variance. Let b∗ be a linear
unbiased estimator for the regression coefficients. In order to prove the Gauss-Markov
theorem, we need to show that,

Cov(b∗)− Cov(b)

is positive semidefinite for every b∗. We proved that b is an unbiased estimator in the
theoretical exercises of week 1. In addition, by the theoretical exercises of week 1, we
have that,

Cov(b) = σ2(X>X)−1.

Let,

b∗ = Cy = (D + (X>X)−1X>)y,

where C = D + (X>X)−1X> is a non-random matrix of size (k + 1) × n. Since b∗ is
assumed to be unbiased, we have that,

E(b∗) = E
[(

D + (X>X)−1X>
)
y
]
=
(
D + (X>X)−1X>

)
Xβ

= (DX + I)β,

which gives DX = 0, since the equation above has to hold for every β. Recall that,
Cov(y) = σ2I, where σ2 is the variance of the residual terms. Hereby, the covariance
matrix is,

Cov(b∗) = E
[
(b∗ − E(b∗)) (b∗ − E(b∗))>

]
= E

[
(Cy− E(Cy)) (Cy− E(Cy))>

]
= E

[
C (y− E(y)) (y− E(y))>C>

)
= C(Cov(y))C> = σ2CC>

= σ2
(
D + (X>X)−1X>

) (
D + (X>X)−1X>

)>
= σ2

(
DD> + DX(X>X)−1 + (X>X)−1X>D> + (X>X)−1

)
= σ2DDT + σ2(X>X)−1 = σ2DD> + Cov(b).
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Furthermore, the difference of the covariance matrices is

Cov(b∗)− Cov(b) = σ2DD>,

which is a positive semidefinite matrix, since DD> is symmetric and

a>(DD>)a = c>c = ||c||22 ≥ 0,

where c = D>a and || · ||2 is the ordinary l2-vector norm. Since the matrix is positive
semidefinite, it follows that the variances of the least squares estimators are smaller (or
at most equal) than the variances of the estimator b∗. Note that, the equality is involved
above, since the matrix D is not necessary of full-rank.

2.2 Let,

y = Xβ + ε, X ∈ Rn×(k+1),

be a linear model that satisfies the standard assumptions (i)-(v). Furthermore, let β
satisfy the constraint,

Rβ = r,

where R is a full-rank m× (k+ 1)-matrix with m < k+ 1. Derive the constrained least
squares estimator for β. Use the method of Lagrange multipliers, and recall that,

k + 1 = number of variables
m = number of constrains
n = number of observations

Solution.

The Lagrangian function is,

f(β,λ) = ε>ε+ 2λ>(Rβ − r)

= (y−Xβ)>(y−Xβ) + 2λ>(Rβ − r)

= y>y− 2y>Xβ + β>X>Xβ + 2λ>Rβ − 2λ>r,

where 2λ is the m-vector of Lagrange multipliers (the multiplier 2 is included for con-
venience). Note that β>X>y and y>Xβ are scalars, and hence y>Xβ = β>X>y. Next,
we differentiate the function f(β,λ) with respect to β and λ, and set the derivatives
equal to zero (recall matrix differentiation from the first theoretical exercises).

∂f(β,λ)

∂β
= −2y>X + 2β>X>X + 2λ>R = 0, (1)

∂f(β,λ)

∂λ
= 2β>R> − 2r> = 0. (2)
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Equations (1) and (2) form a system of equations with unknown vectors β and λ. Note
that, the corresponding equations are formulated as row vectors.

By right-multiplying Equation (1) with the matrix −1
2
(X>X)−1R>, we obtain

y>X(X>X)−1R> − β>R> = λ>R(X>X)−1R>. (3)

It can be shown that the matrix R(X>X)−1R> is invertible, the proof is omitted here.
Next, we use Equation 2 to solve Equation 3 for the the vector λ,

λ> = (y>X(X>X)−1R> − β>R>)(R(X>X)−1R>)−1

= (b>R> − r>)(R(X>X)−1R>)−1,

where,
b = (X>X)−1X>y

is the ordinary least squares estimator for the vector β. Then, by substituting the
obtained expression for λ> into Equation (1), we get that,

−y>X + β>X>X + (b>R> − r>)(R(X>X)−1R>)−1R = 0.

By solving for β, we obtain the constrained least squares estimator bR:

b>R = y>X(X>X)−1 − (b>R> − r>)(R(X>X)−1R>)−1R(X>X)−1

= b> − (b>R> − r>)(R(X>X)−1R>)−1R(X>X)−1

=⇒ bR = b− (X>X)−1R>(R(X>X)−1R>)−1(Rb− r).

Homework

2.3 Consider the following data set containing three observations:

y1 = (y11, y12) = (1, 2)

y2 = (y21, y22) = (3, 4)

y3 = (y31, y32) = (5, 6)

a) Keep the first variable (coordinate) fixed and permute the second variable (coordi-
nate). How many distinct permutations can be formed?

b) Keep the first variable (coordinate) fixed and permute the second variable (coordi-
nate). Find every distinct permutation.

c) Form 5 bootstrap samples of the data.
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d) Consider the following table with eight distinct scenarios. Which of the following are
possible bootstrap samples?

1 2 3 4 5 6 7 8
(1,2) (3,4) (1,2) (1,2) (1,1) (1,6) (1,4) (4,3)
(1,2) (3,4) (2,1) (3,4) (2,2) (3,2) (1,2) (4,3)
(5,6) (3,4) (1,2) (5,6) (3,3) (5,4) (1,6) (4,3)

2.4 Consider the following linear models,

y = α0 + α1x+ ε, (4)
y = β0 + β1x+ β2z + ν, (5)

where we have n observations for the variables z, y and x. The estimates for the regres-
sion coefficients are given by the least squares method and are denoted with the hat
symbol. When do the following claims hold true? (consider each part separately)

Note that some of the claims might not be true in any situation. Deduction with good
reasoning is sufficient here.

a.
∑n

i=1 ε̂
2
i ≥

∑n
i=1 ν̂

2
i (ε̂ and ν̂ are the estimated residuals).

b. α̂1 is statistically significant (5% significance level), but β̂1 is not.

c. α̂1 is not statistically significant (5% significance level), but β̂1 is.

d. The coefficient of determination for model (4) is larger than the coefficient of
determination for model (5).
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