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Exercise 3.

3. Computer exercises

Logarithmic transformations

Time series are often studied after logarithmizations. Intuitive reasoning for logarithmization:

• Relative changes of the values of variables are often more interesting than the absolute
changes.

Technical reasoning for logarithmization:

• If the time series involves an exponential trend, then the trend can be linearized by
logarithmizing the time series.

• If the variance (or seasonal variation) of the time series increases together with the level
of the time series, then it might be possible to standardize the variance by logarithmiza-
tion.

Logartihmization and relative changes
If the value x0 of a variable x changes p%, then the new value x1 is

x1 =
(
1 +

p

100

)
x0

Logarithmization yields:

log(x1) = log(x0) + log
(
1 +

p

100

)
≈ log(x0) +

p

100

Hence, a relative change in the level of a time series is after logaritmization (almost) inde-
pendent of the level, and depends (almost) only on the percentual change p.
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Demo exercises

3.1 Study the following time series.

File (.txt) Variable Description Interval Length
INTEL Intel_Close Intel stock price Exchange day n = 20

Intel_Volume Intel stock volume
SUNSPOT Spots Number of sun spots 1 year n = 215
MLCO2 MLCO2 Carbon dioxide 1 month n = 216

measurements from the
Mauna Loa volcano

SALES Sales Sales volume of a 1 month n = 144
wholesaler

PASSENGERS Passengers Number of airline 1 month n = 144
passengers on inter-
national routes in USA

Solution. Trajectories of the corresponding time series are presented on the following
pages.

INTEL <- read.table("INTEL.txt",header=T)
SUNSPOT <- read.table("SUNSPOT.txt",header=T,row.names=1)
MLCO2 <- read.table("MLCO2.txt",header=T,row.names=1)
SALES <- read.table("SALES.txt",header=T)
PASSENGERS <- read.table("PASSENGERS.txt",header=T,row.names=4)

Intel_Close <- ts(INTEL$Intel_Close)
Intel_Volume <- ts(INTEL$Intel_Volume)
Spots <- ts(SUNSPOT,start=1749)
Mlco2 <- ts(MLCO2$MLCO2,frequency=12)
Sales <- ts(SALES$Sales,frequency=12)
Passengers <- ts(PASSENGERS$Passengers)
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INTEL: Intel_Close Intel stock price in New York stock exchange at the end of the
trading day. The time frame is four weeks.

plot(Intel_Close)
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Figure 1: Plot of Intel_Close time series.

Trend:

• No clear trend and the level of the time series alters.

Seasonality:

• No seasonality.

Stationarity:

• Due to the small number of observations, it is hard to say anything about sta-
tionarity. However, the mean of the time series does not seem to be constant,
which indicates that the time series might not be stationary. This time series is
considered with more detail in Problem 3.3.
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INTEL: Intel_Volume The daily volume of Intel stocks traded in New York stock
exchange during a four week time period.

plot(Intel_Volume)
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Figure 2: Plot of Intel_Volume time series.

Trend:

• No clear trend and the level of the time series alters.

Seasonality:

• No seasonality.

Stationarity:

• Due to the small number of observations, it is hard to say anything about station-
arity. However, the mean of the time series does not seem to be constant, which
indicates that the time series might not be stationary.
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SUNSPOT: Spots
Number of yearly sun spots.

plot(Spots)
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Figure 3: Plot of Spots time series.

Trend:

• No trend.

Seasonality:

• Seasonal component with period that is approximately 11 years. The amplitude of
the time series alters.

Stationarity:

• Time series does not seem to be stationary, since it clearly has a seasonal compo-
nent.
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MLCO2: MLCO2
Carbon dioxide measurements of the Mauna Loa volcano (Hawaii).

plot(Mlco2)
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Figure 4: Plot of MLCO2 time series.

Trend:

• Linear upward trend.

Seasonality:

• Quite regular seasonality with a period of 12 months. Amplitude of the seasonal
component stays constant.

Stationarity:

• The time series does not seem to be stationary, since it has an upward trend and
a seasonal component.
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SALES: Sales
Monthly sales volume of a wholesaler.

plot(Sales)
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Figure 5: Plot of Sales time series.

Trend:

• Upward trend.

Seasonality:

• Quite regular seasonality with a period of 12 months. The amplitude of the seasonal
component increases with the level of the time series.

Stationarity:

• The time series does not seem to be stationary, since it has an upward trend and
a seasonal component.

7 / 13



Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen/ Lietzén/ Voutilainen/ Mellin
Fall 2019

Exercise 3.

PASSENGERS: Passengers
Number of airline passengers on international routes in the USA.

plot(Passengers)
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Figure 6: Plot of Passengers time series.

Trend:

• Upward slightly curvilinear trend.

Seasonality:

• Quite regular seasonality with a period of 12 months. The amplitude of the seasonal
component increases with the level of the time series.

Stationarity:

• The time series does not seem to be stationary, since it has an upward trend and
a seasonal component.
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3.2 The file PASSENGERS.txt contains a time series named Passengers. Plot the time series
by using both linear and logarithmic scales on the y-axis. Compare the plots.

File (.txt) Variable Description Interval Length
PASSENGERS Passengers Number of airline 1 month n = 144

passengers on international
routes in the USA

Solution.

PASSENGERS <- read.table("PASSENGERS.txt",header=T,sep="\t")
# Note that the data has been separated with tabulator
names(PASSENGERS)

The following command sets the years correctly:

PASS2 <- ts(PASSENGERS$Passengers,start=1949,frequency=12)

par(mfrow=c(1,2),mar=c(2.5,2.5,1.5,1.5))
# with par() we can draw both time series in the same plot.

plot(PASS2,main="Passengers")
plot(log(PASS2),main="Log(Passengers)")

dev.off()
# dev.off() returns the default settings for function par()

Figure 7 illustrates, that the amplitude of the seasonal component of the original time
series increases together with the level of the time series (left figure). When logarithmic
scale is used, the amplitude is almost constant (right figure). On the other hand, the
(slight) curvature of the trend of the original time series gets (slightly) overcompensated
with logarithmic scale.
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Figure 7: Plot of Passengers time series with linear and logarithmic scales.

3.3 Study the following time series by estimating their autocorrelation and partial autocor-
relation functions.

File (.txt) Variable Description Time interval Length

INTEL Intel_Close Intel stock price Exchange day n = 20
SUNSPOT Spots Number of sun spots 1 year n = 215

Solution.

Intel_Close

The autocorrelation function and the partial autocorrelation function are estimated as
follows.

par(mfrow=c(1,2))
acf(Intel_Close)
pacf(Intel_Close)

The blue lines in Figure 8 indicate statistical significance with 5% level of significance
(is correlation significant with a particular lag). Correlations that lie inside the blue
lines can be considered as noise with a 5% level of significance. The levels of the blue
lines are given by

qnorm((1 + 0.95)/2)/sqrt(length(Intel_Close))
-qnorm((1 + 0.95)/2)/sqrt(length(Intel_Close))
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Figure 8: Auto- and partial autocorrelation functions of Intel_Close time series.

Comments:

(1) Time series Intel-Close could be stationary based on the figures and hence, it does
not require differencing. The level of the time series changes, but the behavior is
calm locally. We cannot see a monotonic trend or a visible seasonal component.
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Spots

Based on Exercise 3.1, the time series Spots is not stationary. Next, we study the
characteristics of the auto- and partial autocorrelation functions of a non-stationary
time series.

par(mfrow=c(1,2))
acf(Spots,lag.max=50)
pacf(Spots,lag.max=50)
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Figure 9: Auto- and partial autocorrelation functions of Spots time series.

Comments:

(1) Note that the seasonality is clearly visible in the autocorrelation function. By
enlarging the figure, we can see that the period of the season seems to be about 11
years.
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Homework

3.4 Consider the time series Sales from the file SALES.txt. Apply differencing, seasonal
differencing and logarithmic transformations to remove the trend, the seasonality and
the increasing variance. Which difference operations did you apply? Visualize both the
original and the transformed time series. Hint: Difference operators are given by the
function diff in R.

File Variable Description Interval Length
SALES.txt Sales Sales volume of 1 month n = 144

a wholesaler
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