Notes - Theoretical exercises 4

December 3, 2021

Exercise 3.4 b)

How to compute $\operatorname{Cov}\left(x_{t} x_{t-\tau}\right)$?

$$
\begin{aligned}
& \operatorname{Cov}\left(x_{t} x_{t-\tau}\right) \stackrel{\mathbb{E}\left(x_{t}\right)=0}{=} \mathbb{E}\left(x_{t} x_{t-\tau}\right)=\mathbb{E}\left(\sum_{i=0}^{\infty} \phi^{i} \varepsilon_{t-i} \sum_{j=0}^{\infty} \phi^{j} \varepsilon_{t-\tau-j}\right) \\
& \stackrel{\text { hint }}{=} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \phi^{i+j} \mathbb{E}\left(\varepsilon_{t-i} \varepsilon_{t-\tau-j}\right) .
\end{aligned}
$$

Use the fact that

$$
\mathbb{E}\left(\varepsilon_{t-i} \varepsilon_{t-\tau-j}\right)=\left\{\begin{array}{ll}
\sigma^{2}, & t-i=t-\tau-j \\
0, & t-i \neq t-\tau-j
\end{array} .\right.
$$

Then we get

$$
\begin{aligned}
& \operatorname{Cov}\left(x_{t} x_{t-\tau}\right)=\phi^{\tau} \sigma^{2}+\phi^{\tau+2} \sigma^{2}+\phi^{\tau+4} \sigma^{2}+\phi^{\tau+6} \sigma^{2}+\ldots \\
& =\phi^{\tau} \sigma^{2}\left(1+\phi^{2}+\phi^{4}+\phi^{6}+\ldots\right) \\
& =\phi^{\tau} \sigma^{2} \sum_{i=0}^{\infty} \phi^{2 i}=\phi^{\tau} \frac{\sigma^{2}}{1-\phi^{2}} .
\end{aligned}
$$

Exercise 4.1

a)

- Remember from lecture slides 3 that an $\operatorname{AR}(p)$ process is weakly stationary if and only if the roots of the lag polynomial (of the AR part) lie outside the unit circle.
- If it happens that a root is complex, e.g $L=a+b i, a, b \in \mathbb{R}$, then one has to check that

$$
\sqrt{a^{2}+b^{2}}>1
$$

- If a root is real-valued, e.g. $L=c, c \in \mathbb{R}$, then it is sufficient to check that

$$
|c|>1 .
$$

b) Autocorrelation function for stationary $\operatorname{AR}(1) x_{t}=\phi_{1} x_{t-1}+\varepsilon_{t}$ process is

$$
\rho(\tau)=\phi_{1}^{\tau} .
$$

On the other hand, partial autocorrelation function for $\operatorname{AR}(1)$ process is

$$
\alpha(\tau)= \begin{cases}1, & \tau=0 \\ \rho(1), & \tau=1 \\ 0, & \tau \geq 2\end{cases}
$$

Exercise 4.2

Choose $k=2$ in Yule-Walker equations (See lecture slides 3). Then we get

$$
\left(\begin{array}{cc}
1 & \rho_{1} \\
\rho_{1} & 1
\end{array}\right)\binom{\alpha_{21}}{\alpha_{22}}=\binom{\rho_{1}}{\rho_{2}} .
$$

Now solve α_{22}.

Exercise 4.3

i) $\mathrm{MA}(1)$:

$$
\begin{aligned}
& f(\lambda)=\frac{1}{2 \pi}\left(\gamma_{0}+2 \gamma_{1} \cos (\lambda)\right) \\
& =\frac{1}{2 \pi}\left(\left(1+\theta_{1}^{2}\right) \sigma^{2}+2 \theta_{1} \sigma^{2} \cos (\lambda)\right) \\
& =\frac{\sigma^{2}}{2 \pi}\left(1+\theta_{1}^{2}+2 \theta_{1} \cos (\lambda)\right) .
\end{aligned}
$$

ii) $\operatorname{SMA}(1)_{12}$:

$$
\begin{aligned}
& f(\lambda)=\frac{1}{2 \pi}\left(\gamma_{0}+2 \gamma_{12} \cos (12 \lambda)\right) \\
& =\frac{1}{2 \pi}\left(\left(1+\Theta_{1}^{2}\right) \sigma^{2}+2 \Theta_{1} \sigma^{2} \cos (12 \lambda)\right) \\
& =\frac{\sigma^{2}}{2 \pi}\left(1+\Theta_{1}^{2}+2 \Theta_{1} \cos (12 \lambda)\right) .
\end{aligned}
$$

Hints for Exercise 4.4 (Homework)

- Tables about behavior of ACF/PACF for different SARMA models are useful. These tables are found in lecture slides 4 .
- Spectral densities are given in the figures. However, one does not have to interpret them in order to solve the exercise.

