SCHEDULE

	Date		Торіс	
1.	Tue	14.09.	Lec-1: Introduction	
2.	Fri	17.09.	Lec-2: Crystal Chemistry & Tolerance parameter	
3.	Fri	17.09.	EXERCISE 1	
4.	Tue	21.09.	Lec-3: Crystal chemistry & BVS	
5.	Fri	24.09.	Lec-4: Molecular Symmetry & Point Groups	
6.	Fri	24.09.	EXERCISE 2	
7.	Tue	28.10.	Lec-5: Crystallography & Space Groups	
8.	Fri	01.10.	Lec-6: XRD & Reciprocal Lattice	
9.	Fri	01.10.	EXERCISE 3	
10.	Tue	05.10.	Lec-7: ND	
11.	Fri	08.10.	Lec-8: Rietveld	
12.	Fri	08.10	EXERCISE 4: Rietveld	
13.	Tue	12.10.	Lec-9: Synchrotron rad. & XAS & RIXS	
14.	Fri	15.10.	Lec-10: EXAFS & Mössbauer	
15.	Fri	15.10.	EXERCISE 5	
16.	Tue	19.10.	Seminars: XPS, ED, HRTEM, SEM, AFM	
17.	Fri	22.10.	Lec-11: GI-XRD & XRR (10.00-11.30)	
18.	Fri	22.10.	EXERCISE 6: XRR (12.00→)	

EXAM: Friday, Oct. 29th, 2021

SYNCHROTRON RADIATION

- Continuous band of electromagnetic spectrum including infrared, visible light, ultraviolet and x-rays
- Accidentally discovered in an electron synchrotron of the General Electric Company, USA, in 1947

http://www.nsrrc.gov.tw

National Synchrotron Radiation Research Center (NSRRC), Hsinchu, TAIWAN

XANES & EXAFS

- Collaboration with Dr. Jin-Ming Chen
 → 38 joint publications since 2001
- Cu-K, Cu-L, Fe-K, Fe-L, Co-L, Ru-L, Nb-L, Ta-L, Mo-L, W-L, Bi-L, Ce-M, Sr-K, Se-K, O-K

NSRRC, Taiwan

National Synchrotron Radiation Research Center

- Relatively small synchrotron
- Particularly suitable for light elements,
 e.g. oxygen → We are frequent users
- Creation of ACCELERATED ELECTRONS
 - electrons are injected from an Electron Gun
 - pre-accelerated to 50 MeV in a linear LINAC
 - accelerated to 1.5 GeV in a Booster Ring

Booster Ring (72 m in circumference):

- Electrons with 99.999995 % of light speed

LINAC

Electron Gun

Accelerated electrons are sent through a 70-meter long Transport Line into a hexagonal, 120-meter Storage Ring, where they circulate with an energy of 1.5 GeV in ultra-high-vacuum pipes for several hours, emitting synchrotron radiation.

Transport Line

Transport Lin

There are different types of magnets attached to the storage ring to generate X-ray light with different characteristics for different types of experiments

FOCUSING MAGNETS

STORAGE RING

BENDING

MAGNET

UNDULATOR

The emitted light is channeled through **Beamlines** to the **Experimental Stations**, where experiments are conducted.

HFM: Horizontal Focussing Mirror VFM: Vertical Focussing Mirror RFM: Refocussing Mirror

http://www.nsrrc.gov.tw

XAS: X-ray Absorption Spectroscopy

- **XAFS: X-ray Absorption Fine-Structure**
- XANES: X-ray Absorption Near-Edge Structure

RIXS: Resonant Inelastic X-ray Scattering

EXAFS: Extended X-ray Absorption Fine-Structure

EXAFS

- X-ray absorption is measured in the vicinity of absorption edge
- Synchrotron radiation \rightarrow **intense** and **continuous** X-ray radiation
- Absorption edge energy is element specific \rightarrow EXAFS is element specific
- Possible for all elements except for the very lightest elements

EXAFS (Extended X-ray Absorption Fine Structure)

- Oscillatios in the high-energy side of the absorption edge
- Oscillations explained in the 1970s \rightarrow EXAFS theory
- Simplified explanation: x-ray energy absorbed → photoelectrons removed from inner shell → sphere waves → scatter from the neighbouring atoms
 Due to this backscattering → interference effect → oscillations → EXAFS

Oscillations depend on neighbouring atoms (type, number, distance)

STEPS in EXAFS DATA ANALYSIS

- Conversion of measured intensities to µ(E)
- Pre-edge background subtraction (instrumental errors etc)
- •µ(E) normalized to vary from 0 to 1
- Post-edge background removal (smooth curve)
- •Conversion from energy to (photoelectron) wave number: $\mathsf{E} \to \mathsf{k}$
- Weighting k values (to give more impact for higher k values)
- Fourier transform from k to R (= distance) space
- Isolation of appropriate "shells" by Fourier filtering
- •Modelling to EXAFS equation to get: R and N (= coordination number)

 $\mathbf{k}=\sqrt{\frac{2\mathbf{m}(\mathbf{E}-\mathbf{E}_0)}{\hbar^2}}$

Matt Newville Consortium for Advanced Radiation Sources University of Chicago

- Absorption coefficient (μ) versus X-ray energy
- Pre-edge background subtraction
- Normalization

Pre-Edge Subtraction

We subtract away the background that fits the *pre-edge* region. This gets rid of the absorption due to other edges (say, the Fe L_{III} edge).

Normalization

We estimate the *edge step*, $\Delta \mu_0(E_0)$ by extrapolating a simple fit to the above $\mu(E)$ to the edge. We normalize by this value to get the absorption from 1 x-ray.

Post-edge background subtraction

Post-Edge Background

We don't have a measurement of $\mu_0(E)$ (the absorption coefficient without neighboring atoms).

We approximate $\mu_0(\mathbf{E})$ by an adjustable, smooth function: a *spline*.

This can be somewhat dangerous – a flexible enough spline could match the $\mu(\mathbf{E})$ and remove all the EXAFS!

We want a spline that will match the *low frequency* components of $\mu_0(\mathbf{E})$.

- Conversion from energy to (photoelectron) wave number: $E \rightarrow k$
- Weighting k values (to give more impact for higher k values)

0

2

4

8

 $k(Å^{-1})$

6

10

12

14

$\chi(\mathbf{k})$

The raw EXAFS $\chi(k)$ usually decays quickly with k, and difficult to assess or interpret by itself.

It is customary to weight the higher-k portion of the spectra by multiplying by k^2 or $k^3.$

${f k}$ -weighted $\chi({f k})$: ${f k}^2\chi({f k})$

 $\chi(\mathbf{k})$ is composed of sine waves, so we'll Fourier Transform from \mathbf{k} to \mathbf{R} -space. To avoid "ringing", we'll multiply by a *window function*.

- Fourier transform from k to R (= distance) space
- Isolation of appropriate "shells" by Fourier filtering

$\chi({ m R})$

The Fourier Transform of $k^2\chi(k)$ has 2 main peaks, for the first 2 coordination shells: Fe-O and Fe-Fe.

The Fe-O distance in FeO is 2.14Å, but the first peak is

at 1.6Å. This shift in the first peak is due to the *phase-shift*, $\delta(\mathbf{k})$: $\sin[2\mathbf{kR} + \delta(\mathbf{k})]$.

A shift of -0.5Å is typical.

$\chi({ m R})$ is complex:

The FT makes $\chi(\mathbf{R})$ complex. Usually only the amplitude is shown, but there are really oscillations in $\chi(\mathbf{R})$.

Both real and imaginary components are used in modeling.

Modelling to EXAFS equation: R (distance) and N (coordination number)

To model the EXAFS, we use the EXAFS Equation: $\chi(\mathbf{k}) = \sum_{\mathbf{j}} \frac{\mathbf{N}_{\mathbf{j}} \mathbf{f}_{\mathbf{j}}(\mathbf{k}) e^{-2\mathbf{k}^2 \sigma_{\mathbf{j}}^2}}{\mathbf{k} \mathbf{R}_{\mathbf{j}}^2} \sin[2\mathbf{k} \mathbf{R}_{\mathbf{j}} + \boldsymbol{\delta}_{\mathbf{j}}(\mathbf{k})]$

where f(k) and $\delta(k)$ are *photo-electron scattering properties* of the neighboring atom. (The sum is over "shells" of similar neighboring atoms).

If we know these properties, we can determine:

- R distance to neighboring atom.
- N coordination number of neighboring atom.
- σ^2 mean-square disorder of neighbor distance.

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on atomic number Z of the scattering atom, so we can also determine the species of the neighboring atom.

 $|\chi(\mathbf{R})|$ data for FeO (blue), and fit of 1^{st} and 2^{nd} shells (red).

The results are fairly consistent with the known values for crystalline FeO:

6 O at 2.13Å, 12 Fe at 3.02Å.

Fit results (uncertainties in parentheses):

Shell	Ν	${f R}$ (Å)	σ^2 (Ų)	ΔE_0 (eV)
Fe-O	6.0(1.0)	2.10(.02)	0.015(.003)	-2.1(0.8)
Fe-Fe	11.7(1.3)	3.05(.02)	0.014(.002)	-2.1(0.8)

Mössbauer Spectroscopy

- Gamma rays
- Concepts: Recoil energy & Resonance absorption & Doppler effect
- Mössbauer Phenomenon
- Information obtained: Chemical (valence), structural (coordination) & magnetic properties
- Suggested reading:

https://www.rsc.org/Membership/Networking/InterestGroups/MossbauerSpect/Intropart1.asp

Our Mössbauer spectrometer

GAMMA RAYS

- Shortest wavelength (highest energy) part of electromagnetic radiation
- Energy in the order of transitions in atomic nucleus
- Atom nucleus has different energy levels: (lowest energy) ground state and (higher energy) excited states (life times <1 μs)
- When the nucleus returns from an excited state (E_e) to the ground state (E_g) , the energy difference is emitted as gamma rays $(E_0 = E_e E_q)$

RECOIL ENERGY

- Momentum Conservation Law: when gamma rays are emitted the nucleus gets a recoil impulse of the opposite direction (imagine what happens to the boat when the passanger jumps from it to the dock)
- Corresponding recoil energy (= energy loss): E_{recoil} ≈ 10⁻² eV

 $E_{\rm recoil} = E_0^2 / 2mc^2$

- For less-energetic radiation E_{recoil} is negligible
- Due to the recoil energy, gamma rays lose their capability to be absorbed by similar atom nuclii

i.e. so-called **RESONANCE ABSORPTION** is **NOT** possible

RECOIL-FREE EMISSION

- <u>Recoil may be avoided if the emitting nucleus is part of crystal lattice</u>: the entire crystal lattice receives the recoil energy, and the recoil becomes meaningless (the boat is tightly anchored)
- Accordingly the resonance absorption becomes possible
- The recoil-less emission is nowadays known for around 100 nuclii
- Note: different isotopes of the same element behave differently (c.f. ND)
- Probability of recoil emission (f) increases:
 - with decreasing E_0 (with increasing atomic number)
 - with decreasing temperature

MÖSSBAUER PHENOMENON

- Gamma rays emitted in recoil-less manner can be absorbed by similar atoms (nuclii)
 - \rightarrow **RESONANCE ABSORPTION**
- 1957 Rudolf Mössbauer: recoil-less resonance absorption for ¹⁹¹Ir (Nobel 1961)
 → MÖSSBAUER SPECTROSCOPY or NGR (Nuclear Gamma Resonance)
- Mössbauer spectroscopy possible only for transitions between the ground state and the lowest excited state
 → gamma energies less than ca. 100 keV
- By far most commonly utilized Mössbauer nucleus is ⁵⁷Fe (14.4 keV): $f \approx 1$ at room temperature

⁵⁷Fe is the most commonly utilized Mössbauer nucleus; here we concentrate on it only.

⁵⁷Co - ⁵⁷Fe

 Radioactive ⁵⁷Co precursor decays to excited ⁵⁷Fe* nucleus

(⁵⁷Co can be prepared from iron relatively easily in a syclotron)

- Part (9 %) of excited ⁵⁷Fe* decays back to ground state but part (91 %) of it decays via a lower-energy excited state (life time 99 ns)
- Part (10 %) of the lower-energy excited
 ⁵⁷Fe* decays further to ground state emitting 14.4 keV gamma rays
- ⁵⁷Fe is one of the stable isotopes of iron; its portion in natural iron is 2 % (isotope enrichment possible but expensive)

RECORDING of MÖSSBAUER SPECTRUM

- E_0 slightly depends on the environment of the Mössbauer nucleus (e.g. E_0 of ⁵⁷Fe is different in Fe metal and in FeSO₄)
 - $\rightarrow \Delta E_0$ is a parameter that reflects the difference of the two environments
- In Mössbauer measurement it is possible to experimentally observe the resonance absorption (i.e. absorption when $\Delta E_0 = 0$) $\rightarrow \Delta E_0$ needs to be made zero by slightly changing the E_0 value of either the emitting or absorbing nucleus
- Control of *E*₀ is possible only through **Doppler effect**, i.e. by moving either the source (emitting nucleus) or the sample (absorbing nucleus)
 - $\rightarrow\,$ in Mössbauer spectroscopy the energy axis is given in the unit of mm/s
 - \rightarrow the required velocities vary between 1 ~ 1000 mm/s
- Measurement geometry: transmission (most common) or reflection
 - Gamma rays get weaker quite fast → relatively thin sample in transmission measurement → amount of Mössbauer isotope typically 0.1~10 mg
 - In reflection measurement information from surface (0.2~20 μ m) \rightarrow thin films

Mössbauer Spectroscopy

- Source of gamma rays: e.g. iron bulk containing radioactive ⁵⁷Co
- Sample (absorbing gamma rays): containing e.g. ⁵⁷Fe
- **REQUIREMENT:** Resonance absorption → **source is vibrated**
- Detector: measures the intensity of the gamma-ray beam that is transmitted (typical configuration) through the sample

- A solid sample is exposed to gamma-ray beam, and a detector measures the beam intensity transmitted through the sample.
- The gamma-ray energy is varied by vibrating the gamma-ray source. The velocity of the source results in a small energy shift due to the Doppler effect.
- In Mössbauer spectrum, gammaray intensity is plotted as a function of the source velocity.
- At velocities corresponding to the resonant energy levels of the sample, some of the gamma-rays are absorbed, seen as negative peaks in the spectrum.
- The number, positions and intensities of the peaks provide information about the chemical environment of the absorbing nuclei in the sample.

v mm/s

MÖSSBAUER SPECTROSCOPY

- E_0 depends (weakly) on the environment of the Mössbauer nucleus
 - \rightarrow **local environment** of the Mössbauer-active nucleus
 - → called HYPERFINE INTERCATIONS
 - (*i*) **chemical** (oxidation state, spin state): **Isomer shift**
 - (*ii*) **electric** (coordination sphere): **Quadrupole splitting**
 - (*iii*) magnetic (magnetic ordering): Magnetic splitting
- All information (i) ~ (iii) with one measurement
- Perfectly specific for the investigated nucleus
- If the Mössbauer-active nucleus exists in the sample in different environments the overall spectrum consists of the sub-spectra with the relative abundancies of the corresponding different species of the Mössbauer-active nucleus (sum of sub-spectra)

ISOMER SHIFT

Isomer shift (IS or δ) depends:

electron densities about the nucleus

- \rightarrow directly on s-orbital electron configuration \rightarrow indirectly on p/d/f-orbital electron configuration
- In case of iron (3d transition metal) the different oxidation states/spin states differ in terms of the d-orbital electron configuration (which then slightly affects the s-orbital density)
- Isomer shift is given against a standard
- Typically used standards:

¹¹⁹Sn: SnO₂
⁵⁷Fe: Fe metal (officially Na₂[Fe(CN)₅NO])

ELECTRIC QUADRUPOLE INTERACTION

- Nucleus feels electric field gradient due to asymmetry of surrounding ions
- symmetric \rightarrow no splitting; asymmetric surrounding \rightarrow splitting

$\begin{array}{l} \textbf{Magnetic Dipole Interaction} \\ \textbf{Magnetic Splitting} \ \Delta \textbf{E}_{M} \end{array}$

 $\overline{2}$

Summary of HYPERFINE INTERACTIONS affecting Mössbauer spectra

Isomer shift (IS or δ), Quadrupole splitting (Δ) & Magnetic splitting (H_{hf})

Different iron species in the sample

- \rightarrow spectrum consists of sub-spectra of each different Fe species
- \rightarrow intensity ratio of sub-spectra = concentration ratio of corresp. Fe species

EXAMPLE: overall spectrum consists of two sub-spectra

- Intensity/concentration ratio: b-Fe / a-Fe = 2 : 1
- Same isomer shift \rightarrow same valence (+III)
- Slightly larger quadrupole splitting for $a\text{-}Fe \rightarrow$ more asymmetric coordination

Another EXAMPLE

- Overall spectrum consists of two sub-spectra
- Both di- and trivalent iron
- Much more Fe(III) than Fe(II) (presice concentrations from spectral areas)
- Both Fe(III) than Fe(II) in asymmetric coordination, but Fe(II) more asymmetric

Temperature-dependent measurements

 \rightarrow employed e.g. to investigate magnetic transitions

EXAMPLE:

- completely ferro/ferri/antiferro-magnetic at 10 K
- completely paramagnetic at 295 K

NOTE: Can not straightforwardly distinguish the type or magnetic ordering, i.e. ferro, ferri or antiferro

Routine Mössbauer analysis of finely dispersed corrosion particles formed in the cooling system of a power plant

NASA Mars Exploration Rovers: Spirit & Opportunity (launched in 2003):

Mössbauer spectrometer is one of the instruments on the robotic arm

Mössbauer example for B-site ordered DOUBLE PEROVSKITE

RECALL from the first lecture:

- Two different cations (B' and B") occupy the B-site with 50%/50% ratio and in an ordered manner → B-site ordered double perovskite
- Example: B-site ordered halfmetallic Sr₂FeMoO₆: simultaneously ferrimagnetic and electrically conducting → magnetic-field control of conductivity → spintronics
- We also discussed about so-called antisite defects if the ordering is not perfect; for example some Fe atoms occupying the Mo site in Sr₂FeMoO₆ (this kind of disorder distroyes rapidly the ferrimagnetic/halfmetallic properties)

B-site ordered double perovskite

- Ferrimagnetic conductor (T_C = 420 K)
- Halfmetallic: spin polarization of conduction electrons
 →Tunneling-type magnetoresistance below T_C
 K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, *Nature* 395, 677 (1998).
- First assumption: $Fe^{III} d^5 (hs) \& Mo^V d^1$
- Mössbauer: Fe^{2.5} & Mo^{5.5}

Mixed-valent iron: Sr₂Fe^{II/III}Mo^{V/VI}O₆

"Evidence for **Valence Fluctuation** of Fe in Sr₂FeMoO_{6-w} Double Perovskite", J. Lindén, T. Yamamoto, M. Karppinen, H. Yamauchi and T. Pietari, *Appl. Phys. Lett.* 76, 2925 (2000).

We can see for Sr₂FeMoO₆ sample by ⁵⁷Fe Mössbauer Spectroscopy:

- Iron is magnetically ordered (sextets)
- There are many sextets → different types of iron atoms (ideally only one type)
- For the main (M1) sextet isomer shift (IS) corresponds to mixed-valent Fe^{2.5}
- There is also sextet with trivalent Fe³⁺: it is due to antisite (AS) iron atoms
- Iron atoms next to AS-Fe atoms (M2) have valence between 2.5 and 3
- We can also see iron atoms with very low "frustrated" magnetic field; these are trivalent iron atoms at so-called antiphase boundaries (APB)