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See video on how this course is organised in Youtube

Self-study guide

Week 1

Keywords: Introduction, Permutation matrices, Block matrix notation,
Gaussian elimination, Back-substitution, LU -factorisation.

Homework: Problems 9, 10, 21 and 26. In addition, solve any additional
four problems from 1-27 to gain extra points. See outline of Week 1 in

Youtube

Pages: 5-36.

Synopsis: During the first week we prepare for proving the existence of the
Cholesky factorisation by discussing permutation matrices, LU -factorisation,
block matrix notation, and recursive definition of matrix algorithms. There
is lots of revision material on Gaussian elimination that can be skipped, so
do not worry about the large number of pages.

Week 2

Keywords: Cholesky factorisation, fill-in, fill-in reducing permutation, min-
imum degree ordering.

Homework: Problems, 29, 30, 35 and 37. In addition, solve any additional See outline of Week 2 in
Youtubefour problems from 28-37 to gain extra points.

Pages: 37-51.

Synopsis: The topic of the second week is Cholesky factorisation of sparse
matrices. First, we prove existence of the Cholesky factorisation for s.p.d.
matrices without taking sparsity into account. Our existence proof uses
block matrix notation and induction with respect to dimension of the ma-
trix. Unfortunately, the Cholesky factor of a sparse matrix can be dense.
To mitigate this, we discuss methods for predicting location of non-zero en-
tries in the factor without actually computing it. Then we introduce the
minimum degree ordering method with the aim of obtaining a sparse factor
by permuting the matrix before computing it’s Cholesky factorisation.

https://youtu.be/IyizKtHWGtY
https://youtu.be/88LhTSRFk8Q
https://youtu.be/88LhTSRFk8Q
https://youtu.be/5prrWLA_XVA
https://youtu.be/5prrWLA_XVA


2

Week 3

Keywords: Numerical stability analysis, Backward error analysis, floating-
point representation, floating-point arithmetic model, round-off error,

Homework: Problems, 40, 41, 43 and 47. In addition, solve any additionalSee outline of Week 3 in
Youtube four problems from 38-47 to gain extra points.

Pages: 53-66.

Synopsis: A computer can perform billions of arithmetic operations when
computing the Cholesky factorisation of a large matrix. When double pre-
cision floating-point numbers are used, as often is the case, all of these op-
erations are computed slightly inaccurately. Hence, the computed Cholesky
factor is an approximation of the exact factor. During Week 3, we de-
velop tools used to study the accuracy of solutions to linear systems com-
puted using such approximate Cholesky factorisation and back-substitution.
We begin by outline, then discuss perturbation theory, derive a model for
floating-point arithmetic errors, and develop technical estimates we need
later.

Week 4

Keywords: Numerical stability analysis, Backward error analysis, Back-
substitution, Cholesky factorisation, QR-factorisation, Givens Rotation.

Homework: Problems P52, P54, P55, and P56. In addition, solve any
additional four problems from 48-57 to gain extra points.See outline of Week 4 in

Youtube

Pages: 67-85.

Synopsis: During week 4, we give two examples on numerical stability
analysis. First, we estimate the error due to solving 2 × 2 - linear system
with upper triangular coefficient matrix using the back-substitution method
in floating-point representation. Then we study replacing A in linear system
Ax = b by L̂L̂T where L̂ is the Cholesky factor of A computed in floating-
point representation. In both cases, we formulate a linear system for the
floating-point solution and obtain error estimate by perturbation theory.
This requires us to bound the relative error due to floating-point arithmetic
errors. We also discuss a method for computing numerically stable QR

https://youtu.be/h-47wYlfjgI
https://youtu.be/h-47wYlfjgI
https://youtu.be/VWHcv4MMTWc
https://youtu.be/VWHcv4MMTWc
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factorisation.

Week 5

Keywords: Iterative solution method, Fixed-point iteration, Convergence,
Conjugate Gradient method, Line search method, Gradient Descend.

Homework: Problems P59, P66, P67, and P68. In addition, solve any
See video related to P66
and P63 in Youtube

additional four problems from 58-68 to gain extra points.

Pages: 87-103. Synopsis: During week 5 we discuss iterative solution See outline of Week 5 in
Youtube

methods for approximately solving linear system Ax = b. Iterative solu-
tion method is a process generating a sequence {xi} ⊂ Rn such that xi
converges to the solution x. When sufficiently accurate approximation has
been obtained, the iteration is stopped. Iterative methods are based on var-
ious principles. First, we discuss methods based on fixed point techniques.
Then we assume that A is s.p.d. and show that solving the linear system
is equivalent with finding the global minimizer of quadratic functional. We
end the week by deriving the Conjugate Gradient method as a line search
minimisation iteration applied to this functional.

Week 6

Keywords: Iterative solution method, Conjugate Gradient method, or-
thogonal projection, error estimate, Krylov subspace.

Homework: Problems P70, P72, P74, and P76. In addition, solve any
additional four problems from 69-76 to gain extra points.

Pages: 103-113. See outline of Week 6 in
Youtube

Synopsis: During week 6 we give an alternative point-of-view to conjugate
gradient method. We show that iterates generated by CG are A-orthogonal
projections of the exact solution to certain subspaces of Rn. Surprisingly,
these projections can be computed without knowledge of the exact solution.
We derive an error estimate for CG and discuss how convergence can be
improved by using a preconditioner.

https://youtu.be/GjcVN-9lPd8
https://youtu.be/GjcVN-9lPd8
https://youtu.be/h1HmkxXGwV8
https://youtu.be/h1HmkxXGwV8
https://youtu.be/uHz9aB5SRvE
https://youtu.be/uHz9aB5SRvE
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Chapter 1

Direct solution of sparse
linear systems

In this Chapter, we study solution methods for linear systems: Find x ∈ Rn
s.t.

Ax = b, (1.1)

where b ∈ Rn and the coefficient matrix A ∈ Rn×n is large, sparse, symmet-
ric and positive definite (s.p.d.). By sparse matrix, we mean a matrix with
mostly zero entries. If a matrix is not sparse it is called as a dense matrix.

Large, sparse, s.p.d. coefficient matrices are related, e.g., to solution of
partial differential equations (PDEs) using finite element method (FEM) or
finite difference method (FDM). For example, application of FDM to two
dimensional Laplace operator leads to a coefficient matrix having at most
five non-zero entries on every row. If accurate discretisation is required, the
dimension of these coefficient matrices can be of the order n ≈ 105 − 106.

We use the sparse Cholesky factorisation to solve (1.1). In sparse Cholesky
factorisation, sparse, s.p.d. matrix A ∈ Rn×n is decomposed as

P TAP = LLT , (1.2)

where P ∈ Rn×n is a permutation matrix and L ∈ Rn×n is a lower triangular
matrix. As a permutation matrix P is invertible, and equation (1.1) is
equivalent to

P TAPP−1x = P Tb and LLTP−1x = P Tb.

Hence, the solution of (1.1) is obtained by solving the auxiliary problems

Lz = P Tb, LTy = z, and setting x = Py.

5
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As L is a lower triangular matrix, the first two equations above are solved
using back-substitution.

If P = I in (1.2), it becomes the Cholesky factorisation of A that is
related to the Gaussian elimination process. Recall that writing the row-
operations conducted during the Gaussian elimination process using elim-
ination matrices yields the LU -factorisation of the coefficient matrix. In
LU -factorisation, matrix A is written as A = LU where L is a lower trian-
gular and U an upper triangular matrix. The Cholesky factorisation is de-
rived using the same elimination matrices but taking advantage of symmetry
and positive definiteness of A. In sparse Cholesky factorisation, additional
permutations are used to obtain a sparse factor L for a sparse matrix A.

To convince the reader that sparse matrices appear in practice, we be-
gin this Chapter by application of finite difference method to solution of the
Poisson’s equation that results in a linear system with a sparse, s.p.d. coeffi-
cient matrix. Next, we discuss how sparse matrices are stored in the memory
of a computer. Then we prepare to prove existence of the Cholesky factorisa-
tion by recalling the Gaussian elimination process and LU -factorisation. Our
existence proof uses block matrix notation that is discussed next. Finally,
we show existence of the Cholesky factorisation and introduce minimum de-
gree ordering method for obtaining a sparse factor L for a sparse matrix A.
We end the section by studying numerical stability or accuracy of solving
linear systems using Cholesky factorisation computed using floating-point
numbers.

1.1 Preliminaries

1.1.1 Permutation matrices

In this section, we discuss permutation matrices that encode information
on changing the order of rows or the columns of a matrix. Vector p ∈ RnSee video on permuta-

tion matrices in Youtube is called as a permutation vector, if it’s entries satisfy the conditions: pi ∈
{1, . . . , n} and pi 6= pj for all i, j ∈ {1, . . . , n}, i 6= j. This is, a permutation
vector is a re-ordering of

[
1 · · · n

]
. Matrix P ∈ Rn×n is called as a

permutation matrix, if

P =
[
ep1 · · · epn

]
where p ∈ Rn is a permutation vector.

As P has orthonormal columns it is unitary, i.e., P−1 = P T .

Let P ∈ Rn×n be a permutation matrix corresponding to permutation

https://youtu.be/TbGWHZ_ph50
https://youtu.be/TbGWHZ_ph50
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vector p ∈ Rn and split A,B ∈ Rn×n into column and row vectors as

A =
[
a1 · · · an

]
and B =

bT1
...

bTn

 .
Recall that eTi A and Aei are the ith row and column of a matrix A ∈
Rn×n

’
respectively. By direct computation

APei = Aepi = api and eTi P
TB = (Pei)

TB = eTpiB = bTpi .

Hence, these operations reorder the columns and rows according to permu-
tation vector p, this is,

AP =
[
ap1 · · · apn

]
and P TB =

bTp1
...

bTpn

 .
Example 1.1. The permutation matrix changing rows 2 and 3 of a 3 × 3-
matrix is related to the permutation vector is p =

[
1 3 2

]
and obtained

simply as

P =
[
e1 e3 e2

]
=

1 0 0
0 0 1
0 1 0

 .
1.1.2 Problems

P1. (0.5p) Let

A =

1 2 3 4
5 6 7 8
9 10 11 12

 .
Find the permutation matrix corresponding to operations

(a) Swap rows 2 and 3

(b) Swap column 1 and 4

(c) Order rows as 3, 2, 1

P2. (0.5p) Prove the claim:

Let A ∈ Rn×n have orthonormal column vectors. Then A is unitary.
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1.2 Block matrix notation

Block matrix notation is extensively used in this lecture note. Hence, this
section should be studied with care.

See video introduction
to block matrices in
Youtube

In this section, we introduce block matrix notation which is used to
avoid index notation in proofs and derivations. We limit the discussion to
2× 2 block matrices, which are sufficient for our needs. Block matrices are
obtained by splitting entries of a matrix vertically and horizontally into sub-
matrices called blocks. In the following, we often divide matrices to 2 × 2
matrix blocks. For example, split A ∈ Rn×k as

A =

A11
n1×p

A22
n1×q

A12
n2×p

A22
n2×q

 where n = n1 + n2, and k = p+ q.

In the above equation, the size of each sub-matrix is written under it’s
symbol.

Example 1.2. Consider the block decomposition of 3× 3 matrix

A =

1 2 3
4 5 6
7 8 9


to 2× 2 block matrix as

A =

[
a11 aT12
a21 A22

]
where a11 = 1,a12 =

[
2
3

]
,a21 =

[
4
7

]
, A22 =

[
5 6
8 9

]
.

This is, we have sliced A as

 1 2 3

4 5 6
7 8 9

.

We proceed to derive 2 × 2 block-matrix-matrix-product formula. Let
A ∈ Rn×k, B ∈ Rk×m, and recall the matrix-matrix product formula

AB ∈ Rn×m and (AB)ij =

k∑
l=1

ailblj .

Matrices are often written using their column and row vectors as

A =

aT1
...

aTn

 and B =
[
b1 · · · bm

]
,

https://youtu.be/aLwLPGlTUyw
https://youtu.be/aLwLPGlTUyw
https://youtu.be/aLwLPGlTUyw
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where {ai}ni=1 ⊂ Rk and {bi}mi=1 ⊂ Rk. Observe, that we use column vectors,
hence, aT1 is a row vector. Using row and column vectors, the matrix-matrix
product AB can be written as

AB =
[
Ab1 · · · Abm

]
=

aT1B
...

aTnB

 =

aT1 b1 · · · aT1 bm
...

. . .
...

aTnb1 · · · aTnbm

 . (1.3)

Using the above formula gives a Lemma for computing 2× 2 block-matrix-
matrix-product: See video on computing

product of 2×2 matrices
in Youtube

Lemma 1.1. Let A =

A11
n1×p

A12
n1×q

A21
n2×p

A22
n2×q

 ∈ Rn×k and B =

 B11
p×m1

B12
p×m2

B21
q×m1

B22
q×m2

 ∈ See video on proving the
product formula of 2× 2
matrices in YoutubeRk×m Then

AB =

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
. (1.4)

Observe, that the 2×2 block-matrix-matrix product AB is computed similar
to the 2 × 2 matrix-matrix product. This holds in general for all block-
matrix-matrix-products. The sizes of matrix blocks must match in the sense
that all products appearing in (1.4) are well defined. We prove Lemma 1.1
after giving a helper result.

Lemma 1.2. Let
[
C
n×p

D
n×q

]
∈ Rn×k and

 F
p×m
G
q×m

 ∈ Rk×m for k = p + q.

Then [
C D

] [F
G

]
= CF +DG. (1.5)

Observe that the sizes of matrix blocks match in the sense that products
CF and DG are well defined.

Proof. Denote the row vectors of C,D and column vectors of F,G as

C =

cT1
...

cTn

 , D =

dT1
...

dTn

 , F =
[
f1 · · · fm

]
, and G =

[
g1 · · · gm

]
.

https://youtu.be/yX2yEKHihTc
https://youtu.be/yX2yEKHihTc
https://youtu.be/yX2yEKHihTc
https://youtu.be/OkIqHffuBBY
https://youtu.be/OkIqHffuBBY
https://youtu.be/OkIqHffuBBY
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We proceed to give a formula for computing entries of the product matrix[
C D

] [F
G

]
∈ Rn×m. The entry ij of the product matrix is obtained as

eTi
[
C D

] [F
G

]
ej

where ei ∈ Rn and ej ∈ Rm are the ith and jth unit vectors. A direct
calculation

eTi
[
C D

] [F
G

]
ej =

[
cTi dTi

] [ fj
gj

]
= cTi fj + dTi gj = (CF )ij + (DG)ij

gives the formula [
C D

] [F
G

]
= CF +DG. (1.6)

Proof of Lemma 1.1. To prove (1.4) observe that by (1.3)

AB =


[
A11 A12

] [B11

B21

] [
A11 A12

] [B12

B22

]
[
A21 A22

] [B11

B21

] [
A21 A22

] [B12

B22

]
 .

Application of product formula (1.5) completes the derivation.

Example 1.3. Next, we illustrate how block matrix notation is used inSee video on Example
1.3 in Youtube proofs and show that the product of two n×n lower triangular matrices is a

lower triangular matrix. We formulate an induction proof with respect to the
dimension of the lower triangular matrix using suitable 2× 2 block division.

Base step n = 1: Trivially true.

Induction assumption: Product of two k × k lower triangular matrices
is lower triangular.

https://youtu.be/PleDWbAQVkA
https://youtu.be/PleDWbAQVkA
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Induction step: Let L, T ∈ R(k+1)×(k+1) be lower triangular matrices.
Split

L =

 l111×1
0

l21
k×1

L22
k×k

 and T =

 t111×1
0

t21
k×1

T22
k×k

 ,
where L22, T22 lower triangular matrices. Using the 2×2 block matrix-matrix
product formula gives

LT =

[
l11t11 0

l21t11 + L22t21 L22T22

]
.

By induction assumption L22T22 is lower triangular matrix, which completes
the proof.

1.2.1 Problems

P3. (1p) Let

A =

A11
n×n

0

A21
m×n

A22
m×m

 and B =

B11
n×n

0

B21
m×n

B22
m×m

 .
(a) Compute the block-matrix-matrix product AB.

(b) Find the inverse matrix of A. Hint: find B11, B12, B22 such thatA11
n×n

0

A21
m×n

A22
m×m

B11
n×n

0

B21
m×n

B22
m×m

 =

[
I

n×n
0

0 I
m×m

]
.

List assumptions (if any) that you have to make on A11, A12, and
A22.

(c) Argue that detA = 0 implies that either detA11 = 0 or detA22 =
0.

P4. (1p) Let E =

 1
1×1

0
1×n

−a21
n×1

I
n×n

 .

(a) Compute the product E

 1 aT12
1×n

a21
n×1

A22
n×n
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(b) Find the inverse matrix of E using the formula derived in the
previuos problem. Check that your inverse is correct by computing
the product EE−1.

P5. (2p)

(a) Show that

det

 I
n×n

0

0 A22
m×m

 = detA22.

Hint: recall the Laplace expansion for computing determinants
and use induction with respect to parameter n.

(b) Modify the proof in (a) to show that

det

 I
n×n

A12
n×m

0 A22
m×m

 = detA22. (1.7)

P6. (0.5p)

(a) Compute

[
0 I
I 0

] [
I 0
0 A22

] [
0 I
I 0

]
and

[
0 I
I 0

] [
0 I
I 0

]
.

(b) Use properties of determinant, Problem 3, and (a) to show that

det

[
A11 0
0 I

]
= detA11.

P7. (1p) Consider the block matrix A =

A11
n×n

A12
n×m

0 A22
m×m

, where A11 and A22

are invertible matrices.

(a) Compute the product[
A11 0
0 I

] [
I A−111 A12A

−1
22

0 I

] [
I 0
0 A22

]
.

(b) Use, equation (1.7), Problems 3,4, and decomposition in (a) to
show that detA = detA11 detA22.

(c) Argue by Problem 3 that detA = detA11 detA22 even if A11 or
A22 are not invertible.
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P8. (1p) Let

M =



2 0 0 0 0 0
0 3 0 0 0 0
0 0 4 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1

 . (1.8)

(a) Use suitable 2× 2 block decomposition to compute M2.

(b) Use inverse matrix formula from Problem 3 to compute M−1.

1.2.2 Back-substitution in block matrix notation

This section gives a recursive definition of the back-substitution algorithm.
Using recursion is necessary to express the algorithm in block matrix nota-
tion. This section should be studied with care.

In this section, we use block matrix notation to define the back - sub- See video on solution
of upper triangular sys-
tems in Youtube

stitution algorithm. Our definition is recursive with respect to dimension of
the linear system. Using such definition allows simple treatment of matrices
with different dimension using the block matrix notation. We use similar
techniques to study the LU and the Cholesky factorisations.

Consider the linear system: Find x ∈ Rn satisfying

Ux = b,

where the coefficient matrix U ∈ Rn×n is upper triangular and b ∈ Rn.

Definition 1.1. Matrix U ∈ Rn×n is upper triangular, if

Uij = 0 for i > j.

This is

U =


u11 u12 · · · u1n

u22 · · · u2n
. . .

...
unn

 or U =


# # · · · #

# · · · #
.. .

...
#

 .
Here we use notational convention where the location of non-zero entries in
the matrix is indicated by # and zero entries are omitted. Such convention

https://youtu.be/ugxuO2duQKA
https://youtu.be/ugxuO2duQKA
https://youtu.be/ugxuO2duQKA
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is used when the location of non-zero entries is important but their value is
not.

Triangular linear systems are solved using back-substitution algorithm.
We use a definition that is recursive with respect to the dimension of the
coefficient matrix. The function triusolve(U,b) returns solution to linear
system Ux = b for invertible upper triangular matrix U ∈ Rn×n and b ∈ Rn.

For n = 1, triusolve(U, b) = b
U .

For n > 1, we use a recursive definition. First, split the linear system
Ux = b as [

U11 u12

0 u22

] [
x1

x2

]
=

[
b1

b2

]
(1.9)

where x2, b2 ja u22 are scalars, U11 ∈ R(n−1)×(n−1) and u12,x1,b1 ∈ Rn−1.
As U is invertible, u22 6= 0, U11 is invertible1, and

x2 =
b2
u22

.

First equation in (1.9) states U11x1 = b1−u12x2. As coefficient matrix U11 ∈
R(n−1)×(n−1) is invertible and upper triangular, x1 is obtained recursively as
x1 = triusolve(U11,b1 − u12x2). Hence,

triusolve(U, b) =

[
x1

x2

]
.

An example implementation of the above function is given below.See a video on imple-
menting the back sub-
stitution algorithm in
Youtube

function x = triusolve2(U,b)

n = size(U,2);
x = zeros(n,1);

% Define matrix and vector blocks.
U11 = U(1:(n-1),1:(n-1));
u12 = U(1:(n-1),n);
u22 = U(n,n);

b1 = b(1:(n-1));
b2 = b(n);

1See problem 7 on page 12

https://youtu.be/2DqV6vZc4QI
https://youtu.be/2DqV6vZc4QI
https://youtu.be/2DqV6vZc4QI
https://youtu.be/2DqV6vZc4QI
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% solve x2.
x(n) = b2/u22;

if( n > 1 )
% solve x1 using recursive function call.
x(1:(n-1)) = triusolve2(U11,b1-u12*x(n));
end

end

Using recursive function calls is not very efficient. A better strategy is
to update the vector b during the algorithm and use a for-loop to conduct
the computation. An example implementation using such update strategy is
given below.

function x = triusolve(U,b)

N = size(U,2);

x = zeros(N,1);

for n=N:-1:1
% Define matrix and vector blocks.

U11 = U(1:(n-1),1:(n-1));
u12 = U(1:(n-1),n);
u22 = U(n,n);

b1 = b(1:(n-1));
b2 = b(n);

% solve x(i).
x(n) = b2/u22;

% update vector b
b(1:(n-1)) = b1 - u12*x(n);

end

The above algorithm can be easily modified to solve lower triangular linear
systems.

1.2.3 Problems

P9. (2p) Use block matrix notation to give a recursive definition of function
trilsolve(L,b) that returns solution of linear system Lx = b where L
is a lower triangular matrix.
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P10. (2p)

(a) Give a recursive implementation of trilsolve in Matlab

(b) Modify recursive implementation in (a) to use the update strategy.

P11. (1p)

(a) Compute, how many arithmetic operations are needed to solve a
N ×N - upper triangular system.

(b) Measure the time required to solve upper triangular linear systems
using Matlab backslash, back substitution using recursive imple-
mentation, and back substitution using update strategy. Generate
random upper triangular matrices with dimension N = 10, 50,
100, 200, 300, 400, and 500 using commands rand and triu. For
each dimension, compute average solution time for each method
from 100 solves. Plot average solution times as a function of N
using a logarithmic scale. Does the result correspond to (a) ?

1.3 Finite difference method

This section gives an example application that leads to linear system with
large, sparse and s.p.d coefficient matrix. It is extra material and can be
skipped. Or just have a look at the video.

Let Ω ⊂ R2 be a bounded open set with sufficiently regular boundarySee video introduction
to finite difference
method

and recall the definition of the Laplace operator ∆ in R2,

∆ :=
∂2

∂x21
+

∂2

∂x22
.

The Poisson’s equation in Ω is: Find u ∈ C2(Ω) ∩ C(Ω) such that{
−∆u = f in Ω

u = 0 on ∂Ω
(1.10)

where f is a given function2. The Poisson’s equation is a simple model prob-
lem for other PDEs that appear, e.g., in electrical or mechanical engineering.

2Here C2(Ω) and C(Ω) are spaces of functions that have two derivatives in open set
Ω and functions that are continuous in closure of Ω, respectively. The differentiability is
required for the equation −∆u = f to be well defined, and continuity up to boundary for
the boundary condition u = 0 to be meaningful

https://www.youtube.com/watch?v=KCWqByKAaHM
https://www.youtube.com/watch?v=KCWqByKAaHM
https://www.youtube.com/watch?v=KCWqByKAaHM


1.3. FINITE DIFFERENCE METHOD 17

Several different numerical methods have been developed to find approxi-
mate solutions to (1.10). We use the finite difference method, in which one
seeks for an approximation to the point-wise values of u. The first step is
to derive the central difference approximation of the Laplace operator.

Let h ∈ R, h > 0. The Taylor expansion3 of the solution u with respect
to the variable x1 gives

u(x1 + h, x2) = u(x1, x2) +
∂u

∂x1
(x1, x2)h+

1

2

∂2u

∂x21
(x1, x2)h

2 +
1

6

∂3u

∂x31
(x1, x2)h

3 + h.o.t.

u(x1 − h, x2) = u(x1, x2)−
∂u

∂x1
(x1, x2)h+

1

2

∂2u

∂x21
(x1, x2)h

2 − 1

6

∂3u

∂x31
(x1, x2)h

3 + h.o.t.,

where h.o.t is used to denote higher order terms with respect to h. Sub-
tracting the two above equations and dividing by h2 gives

∂2u

∂x21
(x1, x2) ≈

u(x1 + h, x2)− 2u(x1, x2) + u(x1 − h, x2)
h2

. (1.11)

Similar computations for the x2 - component give

∂2u

∂x22
(x1, x2) ≈

u(x1, x2 + h)− 2u(x1, x2) + u(x1, x2 − h)

h2
. (1.12)

Combining (1.11) and (1.12) yields the central difference approximation of
the Laplace operator:

(∆u)(x1, x2) ≈
u(x1 − h, x2) + u(x1 + h, x2)− 4u(x1, x2) + u(x1, x2 − h) + u(x1, x2 + h)

h2
.

The accuracy of this approximation depends on h as well as on the properties
of the function u.

Next, consider the domain Ω = (0, 1)2 and a uniform N ×N -grid com-
posed of points

xij =
1

N − 1

[
i− 1
j − 1

]
for i, j ∈ {1, . . . , N}

see Figure 1.1. The distance between grid points is denoted by h := 1
N−1

and the value of u at the grid point xij by uij := u (xij).
Observe that the indices of interior grid points xij ∈ Ω and boundary

grid points xij ∈ ∂Ω are

I := { (i, j) | i, j ∈ {2, . . . , N − 1} }
3Observe that the expansion requires additional regularity of u, i.e u ∈ C3(Ω).
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and
B := { (i, j) | i, j ∈ {1, . . . , N} } \ I,

respectively. At interior grid points, the finite difference approximation
states that:

u(i−1)j + u(i+1)j + ui(j−1) + ui(j+1) − 4uij

h2
≈ f(xij). (1.13)

Due to the boundary condition u = 0 on ∂Ω,

uij = 0 (1.14)

at boundary grid points.
In finite difference method, one poses (1.13) as equality and seeks for

approximate point wise values of u satisfying the resulting linear system.
For notional simplicity, we denote the FD-approximation also by uij . The
challenge in solving uij is constructing the coefficient matrix of the linear
system (1.13)-(1.14), which requires careful index handling. First, collect
the variables uij into the vector U ∈ RN2

as

U =



u11

u12

u13
...

u21

u22

u23
...


It is helpful to explicitely define mapping σ(i, j) = (i − 1)N + j that aids
in index handling. The value uij resides in the element σ(i, j) of vector U.
The vector U satisfies

AU = b.

The non-zero entries of the coefficient matrix A ∈ RN2×N2
and vector b ∈

RN2
are:

aσ(i,j)σ(i−1,j) = 1, aσ(i,j)σ(i+1,j) = 1,

aσ(i,j)σ(i,j−1) = 1, aσ(i,j)σ(i,j+1) = 1,

aσ(i,j)σ(i,j) = −4, bσ(ij) = f(xij).

for interior indices i, j ∈ I and

aσ(i,j)σ(i,j) = 1, bσ(ij) = 0
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for boundary indices i, j ∈ B. The matrix A is assembled in the following
code.

N = 50;
A = sparse( Nˆ2,Nˆ2);
h = 1/(N-1);

ijmap = @(i,j)( (i-1)*N + j);
active = []; % collect not boundary nodes here.

for i=1:N
for j=1:N

x(i,j) = (i-1)/(N-1); y(i,j) = (j-1)/(N-1);

if( (i > 1) & (i < N) & ( j > 1) & ( j < N))

% This is the row corresponding to point (i,j)
I1 = ijmap(i,j);

active = [active I1];

A(I1, ijmap(i-1,j)) = -1/hˆ2;
A(I1, ijmap(i+1,j)) = -1/hˆ2;
A(I1, ijmap(i,j-1)) = -1/hˆ2;
A(I1, ijmap(i,j+1)) = -1/hˆ2;
A(I1, I1) = 4/hˆ2;

b(I1,1) = 1;
end

end
end

% system without active rows
A = A(active,active);
b = b(active);

% solve !
u = zeros(Nˆ2,1);
u(active) = A\b;

% visualize u.
U = reshape(u,N,N);
figure;S = surf(x',y',U);
set(S,'facecolor','interp');
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Figure 1.1: Node numbering in i, j - system vs. node numbering correspond-
ing to vector U

The rows of A related to boundary indices are not interesting and they are
eliminated. Let P ∈ RN2×N2

be a permutation matrix ordering the rows of
U as

P TU =

[
UI

UB

]
where UI ∈ R(N−2)2 and UB ∈ R4(N−1) are the values of uij related to
interior and boundary grid points, respectively. Application of the same
splitting to A and b gives

P TAT =

[
AII AIB
ABI ABB

]
and P Tb =

[
bI
bB

]
.

As UB = 0 by (1.14), UI satisfies the system AIIUI = bI where the
matrix AII depends on the permutation P . The matrix AII ∈ RN2×N2

is
symmetric and has at most five non-zero entries on ever column. It’s sparsity
structure, i.e. location of non-zero entries, generated by the above code is
visualized in Figure 1.2 using the Matlab command spy(A). The accuracy
of the computed approximate point-wise values depends on h. If accurate
solutions are sought for, h is small and the number of grid points N can be
large. For example, N can be of the order N = 1000, which results to linear
system with dimension (N − 2)2 ≈ 106.

1.3.1 Problems

P12. (1p)
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nz = 288
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Figure 1.2: Nonzero entries of the matrix AII related to the linear system
given in equation (1.13).

(a) Derive the finite difference approximation of Laplace operator in
1D.

(b) Write a Matlab code to solve the 1D Poisson’s equation: find
u(x) ∈ C2((0, 1)) ∩ C([0, 1]) satisfying

−u′′(x) = 1 in (0, 1) and u(0) = u(1) = 0.

Plot the solution u.

P13. (2p) Let A ∈ R2n×2n, n > 3, satisfy

A =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 . (1.15)

(a) Let x satisfy Ax = 0. Show that x also satisfies[
xi+1

xi+2

]
= C

[
xi−1
xi

]
for i ∈ {1, . . . , 2n−2} and C =

[
−1 2
−2 3

]
(b) Use the Jordan decomposition of C to show that[

x2n−1
x2n

]
=

[
−2n+ 1 2n
−2n 2n+ 1

] [
x1
x2

]
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(c) Show that x2 and x1 satisfy[
2 −1

−2n− 1 2n+ 2

] [
x1
x2

]
= 0.

Use (b) to argue that N(A) = {0} and A is invertible.

P14. (1p) Consider the matrix A defined in (1.15).

(a) Show by direct computation that xTAx ≥ 0, for any x ∈ Rn i.e.
A is positive semi-definite matrix.

(b) Argue that any symmetric and positive semi-definite matrix with
trivial null-space is positive definite.

(c) Use (b) and Problem 13 to argue that A is positive definite.
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1.4 Compressed column storage format

This section discusses sparse matrix storage formats used in practical im-
plementation of sparse matrix data types. The aim is to highlight the fact
that computational complexity of accessing matrix rows, columns, and el-
ements depends on the chosen storage format. This has to be taken into
account when designing high-level matrix algorithms. It also explains why
sparse matrix literature gives several alternative ways to compute, e.g., the
Cholesky factorisation. This Section is extra material and can be skipped.

In this section, we discuss how sparse matrices are stored in the memory See video on CCS stor-
age format in Youtubeof a computer. The applied storage format affects the time required to access

matrix elements which should be taken into account when designing sparse
matrix algorithms.

A dense matrix is typically stored as a two-dimensional array of num-
bers, whereas only non-zero entries of a sparse matrix are stored. There are
several data structures used for this purpose, the most common ones be-
ing compressed row storage (CRS) and compressed column storage (CCS)
formats. For example, Matlab uses CCS format to store sparse matrices.

The compressed column storage format uses three arrays:

• Values: List of matrix entries ordered column wise.

• Row indices: The row index for each of the entries

• Column pointers: Index of the first entry of a every column in the
values and row index lists.

The CCS format is best illustrated by examples.

Example 1.4. Let

A =

[
a11 a12
a21 a22

]
.

In CCS format A is stored as

vals =
[
a11 a21 a12 a22

]
row ind =

[
1 2 1 2

]
col ptr =

[
1 3 5

]
Example 1.5. Let

B =

−2 1 0
1 −2 1
0 1 −2

 .

https://youtu.be/kTIC_ElOSZw
https://youtu.be/kTIC_ElOSZw
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In CCS format, B is stored as

vals =
[
−2 1 1 −2 1 1 −2

]
row ind =

[
1 2 1 2 3 2 3

]
col ptr =

[
1 3 6 8

]
In the above examples, the column pointer has an extra entry with value

length(vals)+1 that is used to simplify implementation of matrix operations.
If the extra entry is used, the column i is accessed simply as

A.col ptr = [1 3 6 8];
A.rowind = [1 2 1 2 3 2 3 ];
A.val = [-2 1 1 -2 1 1 -2 ];

col i = A.val( A.col ptr(i):(A.col ptr(i+1)-1) );

The CCS format has constant access time for columns of a matrix. Ac-
cessing rows requires looping over the row index array, hence the required
time depends linearly on the size of the matrix. Element access is done by
first accessing the column and then finding the desired entry. If the row
indices are sorted, the desired entry can be sought for using, e.g., bisec-
tion search. In this case, the access time for the element ij has logarithmic
dependency on the number of nonzero entries in the column j.

The access times in Matlab can be studied with the following test code.
The resulting times are plotted in Figure 1.3

Nlist = floor(linspace(1,1e5,10));
row timer = []; col timer = []; ele timer = [];

for n = Nlist

e = ones(n,1);
A = spdiags([e -2*e e], -1:1, n, n);

I = randi(n,1e3,1); J = randi(n,1e3,1);

T = tic;
for j=1:1e3

x=A(I(j),J(j));

end
ele timer = [ele timer toc(T)/1e3];

T = tic;



1.4. COMPRESSED COLUMN STORAGE FORMAT 25

dimension of matrix
×10

4
0 2 4 6 8 10

ti
m

e
(s

)

×10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Element
Column
Row

dimension of matrix
×10

4
0 2 4 6 8 10

ti
m

e
(s

)

×10
-6

2

2.5

3

3.5

4

4.5

5

5.5

6

Element
Column

Figure 1.3: Example of access times for elements, rows, and columns of the
one dimensional finite difference matrix A ∈ Rn×n in (1.15) as a function of
the dimension n. The test is done in Matlab.

for j=1:1e3
x=A(:,I(j));

end
col timer = [col timer toc(T)/1e3];

T = tic;
for j=1:1e3

x=A(I(j),:);

end
row timer = [row timer toc(T)/1e3];

end

figure; plot(Nlist,ele timer,'ro:',Nlist,col timer,'k*-.',Nlist,row timer,'bd--');
legend('Element','Column','Row');
ylabel('time(s)'); xlabel('dimension of matrix');

figure; plot(Nlist,ele timer,'ro:',Nlist,col timer,'k*-.');
legend('Element','Column');
ylabel('time(s)'); xlabel('dimension of matrix');
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1.4.1 Additional material

• For more information on sparse matrices in Matlab, see

John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matri-
ces in matlab: Design and implementation. SIAM Journal on Matrix
Analysis and Applications, 13(1):333–356, 1992

1.4.2 Problems

P15. (0.5p) Let

A1 :=


1 0 2 0
3 0 4 0
0 5 0 6
7 8 9 10

 . (1.16)

and

N = 5;
A2 = 2*eye(N) + diag(-ones(N-1,1),1)+ diag(-ones(N-1,1),-1)

Write A1 and A2 using the compressed column storage scheme.

P16. (1p) Write a Matlab-function [val,row,col] = mat2ccs(A) that re-
turns the CCS representation of matrix A. Test your implementation
using matrices A1 and A2 defined in Problem 15.

P17. (1p) Write Matlab functions coli = ccs col(val,row,col,i) and
rowi = ccs row(val,row,col,i) that return column and row i of a
matrix represented in CCS format by val, row, and col-vectors. Repeat
the column and row access time test using your own functions.

1.5 Gaussian elimination

This is section is a review of the Gaussian elimination process. Read it to
refresh your memory, or skip it.

Let A ∈ Rn×n, b ∈ Rn, and consider the linear system: Find x ∈ RnSee video introduction
to Gaussian elimination
in Youtube

satisfying

Ax = b. (1.17)

https://youtu.be/rb5ILrTd1oQ
https://youtu.be/rb5ILrTd1oQ
https://youtu.be/rb5ILrTd1oQ
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Gaussian elimination is an algorithm that transforms (1.17) to the equivalent
system: Find x ∈ Rn satisfying

Ux = b̃, (1.18)

where the coefficient matrix U ∈ Rn×n is upper triangular and b̃ ∈ Rn.
System (1.18) can be easily solved using the back substitution algorithm,
see Section 1.2.2.

We proceed by applying the Gaussin elimination to (1.17) in it’s com-
ponent form

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a21x1 + a22x2 + a23x3 + . . .+ a2nxn = b2

a31x1 + a32x2 + a33x3 + . . .+ a3nxn = b3
...

an1x1 + an2x2 + an3x3 + . . .+ annxn = bn

. (1.19)

For simplicity, assume that entry a11 6= 0. The case a11 = 0 is discussed in
Section 1.5.1. The variable x1 is solved from the first equation in (1.19) as

x1 =
b1
a11
−

n∑
j=2

a1j
a11

xj .

Using this expression, we eliminate variable x1 from equations {2, . . . , n} in
(1.19). This yields new linear system for x:

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a
(2)
22 x2 + a

(2)
23 x3 + . . .+ a

(2)
2n xn = b

(2)
2

a
(2)
32 x2 + a

(2)
33 x3 + . . .+ a

(2)
3n xn = b

(2)
3

...

a
(2)
n2 x2 + a

(2)
n3 x3 + . . .+ a(2)nnxn = b(2)n ,

(1.20)

with coefficients a
(2)
ij

a
(2)
ij = aij −

ai1
a11

a1j for i, j ∈ {2, . . . , n}.

This is, the transformed system is obtained by multiplying the first equation
in (1.19) with −ai1a−111 and adding it to the equation i in (1.19). Observe
that the resulting equations {2, . . . , n} in (1.20) are independent of x1.
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The above process is the first step of the Gaussian elimination algorithm.

Assuming that a
(2)
22 6= 0, the algorithm proceeds by eliminating variable x2

from the transformed equations {3,. . . ,n} in system (1.20). Under assump-

tion a
(2)
22 6= 0,

x2 =
b
(2)
22

a
(2)
22

−
n∑
j=3

a
(2)
2j

a
(2)
22

xj .

Identically, variable x2 is eliminated from the transformed equations {3, . . . , n}
in (1.20). New coefficients are computed as :

a
(3)
ij = a

(2)
ij −

a
(2)
i2

a
(2)
22

a2j for i, j ∈ {3, . . . , n}.

Assuming a
(i)
ii 6= 0 for i ∈ {3, . . . , n}, the above process can be repeated

until (1.19) has been transformed to the system

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a
(2)
22 x2 + a

(2)
23 x3 + . . .+ a

(2)
2n xn = b

(2)
2

a
(3)
33 x3 + . . .+ a

(3)
3n xn = b

(3)
3

...

a(n)nn xn = b(n)n

.

The matrix elements a
(i)
ii for i ∈ {1, . . . , n} are called pivots. Here and in

the following we set a
(1)
ij := aij .

We denote the coefficient matrix of intermediate transformed system on
step k ∈ {1, . . . , n} as A(k) ∈ Rn×n. For k = 1 we define A(1) := A. The
systems A(2)x = b(2) and A(3)x = b(3) are given in (1.19) and (1.20). For
k ∈ {2, . . . , n}, matrix A(k) has the block structure

A(k) =

[
U (k) A

(k)
12

0 A
(k)
22

]
.

where the matrix U (k) ∈ R(k−1)×(k−1) is upper triangular.

Example 1.6 demonstrates how the Gaussian elimination algorithm is
used in hand calculations.

Example 1.6. Consider the linear system
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x1 + x2 + x3 = 0

x1 + 2x2 + 4x3 = 1

x1 + 3x2 + 2x3 = 7.

In matrix form, the above system is: find x ∈ R3 satisfying

Ax = b, where A =

1 1 1
1 2 4
1 3 2

 and b =

0
1
7

 .
When running Gaussian elimination algorithm by hand, matrix A and vector
b are written in the same table as 1 1 1 0

1 2 4 1
1 3 2 7

 .
The row operations are marked on the left hand side of the table.

−Y 1
−Y 1

 1 1 1 0
1 2 4 1
1 3 2 7

→
−2Y 2

 1 1 1 0
0 1 3 1
0 2 1 7

→
 1 1 1 0

0 1 3 1
0 0 −5 5

 .
The resulting linear system is solved using the back-substitution algorithm. 1 1 1 0

0 1 3 1
0 0 −5 5

 x3=−1→
[

1 1 1
0 1 4

]
x2=4→

[
1 −3

]
→ x1 = −3.

This process yields the solution x =
[
−3 4 −1

]T
.

Problems

P18. (0.5p) Solve the linear system
1 0 2 1
0 1 2 2
−2 1 0 1
−1 0 −4 2

x =


1
1
1
1


by hand using Gaussian elimination and back-substitution. Check your
solution using Matlab.
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P19. (1p) Let A ∈ Rn×n. Assume, that all pivots during Gaussian elimina-
tion are no-zeros. Estimate the total number of arithmetic operations
·,+,−, / in the elimination process of A.

Use the identity

n−1∑
x=1

(x+ α)k ≤
∫ n−1

0
(x+ α+ 1)k, (1.21)

for α ∈ R and k ≥ 0 to give a simple upper bound for the number of
operations. Identity (1.21) follows from geometric interpretation of the
sum, see Figure 1.4.
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Figure 1.4: Geometry interpretation of estimate (1.21)
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1.5.1 Pivoting

In this section, we modify Gaussian elimination process to cope with zero
pivot elements. If pivot is zero, an additional pivoting step changing the
order of equations or unknowns is conducted before the elimination step.
Changing the order of rows and/or columns is expressed using permutation
matrices.

Example 1.7. Consider the linear system
x1 + x2 + x3 = 0

x1 + x2 + 4x3 = 3

x1 + 3x2 + 2x3 = 7.

To perform Gaussian elimination by hand, we write the system in a table: 1 1 1 0
1 1 4 3
1 3 2 7


First step of elimination yields:

−Y 1
−Y 1

 1 1 1 0
1 1 4 3
1 3 2 7

→
 1 1 1 0

0 0 3 3
0 2 1 7


Because the pivot a

(2)
22 = 0 we exchange rows two and three. This corresponds

to changing the order of equations in the original linear system and does not
change the solution. We obtain, 1 1 1 0

0 2 1 7
0 0 3 3

 . (1.22)

The coefficient matrix has now been transformed to upper triangular one,
and x is solved using back-substitution.

The permutation vector corresponding to changing rows 2 and 3 is p =[
1 3 2

]
and the related permutation matrix

P =

1 0 0
0 0 1
0 1 0

 .
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In this example, transformed system (1.22) is obtained by applying Gaussian
elimination without pivoting to linear system

P TAx = P Tb.

We show in Section 1.6 that changing the order of equations or un-
knowns during the elimination process does not change the solution of the
linear system. Further, identical transformed system is obtained by applying
Gaussian elimination without pivoting to the permuted linear system

P TAQ(Q−1x) = P Tb,

where P and Q are permutation matrices re-ordering eqautions and entries
of x.

When running the Gaussian elimination process by hand, the pivot is
chosen so that the resulting computations are as simple as possible. When
Gaussian elimination is implemented using a computer, pivoting is applied
on every step to improve numerical stability of the algorithm. Numerical
stability is discussed later in this course.

Different pivoting strategies on step k are:

• Row-pivoting: Choose entry a
(k)
ik for i ∈ {k, . . . , n} with largest ab-

solute value as pivot

• Column-pivoting: Choose entry a
(k)
kj for j ∈ {k, . . . , n} with largest

absolute value as pivot

• Full-pivoting: Choose entry a
(k)
ij for i, j ∈ {k, . . . , n} with largest

absolute value as pivot

1.5.2 Problems

P20. (0.5p) Solve the linear system
1 0 3 4
2 0 9 9
0 1 3 2
0 3 9 8

 =


1
1
1
1

 .
Using Gaussin elimination and back substitution.
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1.5.3 Elimination matrices and LU-factorisation

In this section, we express row operations conducted during Gaussian elim-
ination process using elimination matrices. This representation allows us to
prove equivalence between the original and the transformed linear system.
It also yields the LU factorisation of a matrix A.

For simplicity, assume that all pivot elements are nonzero. On step k

of the elimination process, row k is first multiplied with a −a
(k)
ik

a
(k)
kk

and then

added to row i for i ∈ {k + 1, . . . , n}. The corresponding linear mapping is

fk(x)i =

xi i ≤ k

xi −
a
(k)
ik

a
(k)
kk

xk i > k
.

When pivots a
(k)
kk 6= 0, the mapping fk is invertible and

f−1k (x)i =

xi i ≤ k

xj +
a
(k)
ik

a
(k)
kk

xk i > k
.

First step of the elimination process can be stated as f1(Ax) = f1(b).
Let E1 ∈ Rn×n be the matrix representation of the linear mapping f1,
this is f1(x) = E1x. The matrix representation is obtained as E1 =[
f1(e1) f1(e2) · · · f1(en)

]
, where {ei}ni=1 are the Cartesian unit vectors.

This yields

E1 =


1
−a21
a11

1
...

. . .

−an1
a11

1


Using the above matrix representation gives the relation

A(2) = E1A and b(2) = E1b,

where A(2) is the transformed coefficient matrix obtained from step 1. Trans-
formation of linear system Ax = b to upper triangular form corresponds to

f(Ax) = f(b). (1.23)

where f = fn−1 ◦ . . . f1. Let Ek be the matrix representation of the linear
mapping fk. Then the final transformed system satisfies

A(n) = En−1 . . . E2E1A and b(n) = En−1 . . . E2E1b. (1.24)
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As A(n) is an upper triangular matrix, we denote U = A(n). Observe that the
structure of elimination matrices changes for every k making them difficult to
write using block matrix notation. This difficulty is addressed in Section 1.6
using recursive definition of the Gaussian elimination process.

Observe, that f−1 = f−11 ◦ . . . f
−1
n−1. Hence f has an inverse, and f(x) =

0⇒ x = 0. Thus

f(Ax− b) = 0⇒ Ax− b = 0.

This is, the solution to transformed linear system produced by Gaussian
elimination is also the solution to the original system.

Let A ∈ Rn×n be invertible matrix and assume non-zero pivots. By
(1.24) it holds that En−1 . . . E2E1A = U where U is an upper triangular
matrix. Inverting the product of elimination matrices yields the LU factori-
sation

A = LU for L = E−11 · · ·E
−1
n−1. (1.25)

By Problem 21 on page 34, the matrix L is lower-triangular. Recall that
entries of matrix L can be obtained directly from the row multipliers used
in the elimination process. This fact is tricky to prove using index notation,
hence, it is proven in Section 1.6 using block matrix notation.

Linear system

Ax = b

is reduced to two sub-problems using LU -factorisation of A = LU

Ly = b and Ux = y.

Both sub-problems have triangular coefficient matrices and can be efficiently
solved using back-substitution, see Section 1.2.2.

Problems

P21. (2p) Show that the inverse of any n×n lower triangular matrix is lower
triangular. Formulate an induction proof with respect to the dimension
n and use Problem 3 on page 11

P22. (1p) Let A ∈ Rn×n be invertible matrix. Show that on step k ∈
{2, . . . , n} of Gaussian elimination there exists a nozero pivot on column
k. Hint: argue by contradiction and recall the block form of A(k) and
use Problem 7 on page 12.
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1.6 LU Factorization in block matrix notation

In this section, we use block matrix notation to define a recursive processSee video on introduc-
tion to recursive algo-
rithm for computing the
LU decomposition

that returns the LU factorisation of a given invertible matrix. Recall that
the elimination matrices related to the elimination process all have differ-
ent structure, and hence, they cannot be easily treated using block matrix
notation. This problem is remedied by recursive definition that allows us
to formulate the elimination process using only the first elimination matrix.
The given process could be easily turned into an existence proof of the LU
- decomposition. It also shows that the matrix L can be constructed from See video on recursive

algorithm for computing
the LU decomposition

multipliers related to row operations and there is no need to save or construct
elimination matrices E1, . . . , En−1 or their inverses during the elimination
process. We do not assume non-zero pivots and use row pivoting. In this
case, the LU factorisation of invertible matrix A ∈ Rn×n is

P TA = LU where P is a permutation matrix.

Next, we give a recursive definition of [P,L, U ] = lu(A) that returns the LU
factorisation of invertible matrix A.

For n = 1, lu(A) = [1, 1, A].

For n > 1, we use recursive definition. First, we seek the permutation P
such that (P TA)11 6= 0. Next, split P TA as

P TA =

[
a11 aT12
a21 A22

]
where a11 ∈ R, a12,a21 ∈ R(n−1) and A22 ∈ R(n−1)×(n−1).

The elimination matrix corresponding to first step of Gauss algorithm is

E =

[
1 0
−a21
a11

I

]
and EP TA =

[
a11 aT12

0 A22 −
a21aT

12
a11

]
.

Let [P2, L2, U2] = lu(A22 −
a21aT

12
a11

) so that A22 −
a21aT

12
a11

= P−T2 L2U2 and

P TA =

[
1 0
a21
a11

I

] [
1 0

0 P−T2

] [
1 0
0 L2

] [
a11 aT12
0 U2

]
.

By direct computation,[
1 0

a21
a11

I

] [
1 0

0 P−T2

]
=

[
1 0

0 P−T2

] [
1 0

P T2
a21
a11

I

]
.

https://youtu.be/DNIQ6GNDD6M
https://youtu.be/DNIQ6GNDD6M
https://youtu.be/DNIQ6GNDD6M
https://youtu.be/DNIQ6GNDD6M
https://youtu.be/Bjji2XkOEm0
https://youtu.be/Bjji2XkOEm0
https://youtu.be/Bjji2XkOEm0
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Thus [
1 0
0 P T2

]
P TA =

[
1 0

P T2
a21
a11

L2

] [
a11 aT12
0 U2

]
.

And finally

lu(A) =

[
P

[
1 0
0 P2

]
,

[
1 0

P T2
a21
a11

L2

]
,

[
a11 aT12
0 U2

]]
.

We deduce from the above algorithm that the Gaussian elimination with
pivoting is Gaussian elimination applied matrix

P TA,

where P collects all row permutations done during the process. Same holds
for row- and full-pivoting. The matrix L is obtained by collecting the mul-
tipliers from step k as

L =


1
α21 1
α31 α32 1

...
... . . .

. . .

αn1 αn2 . . . αn(n−1) 1

 where αij =
a
(j)
ij

a
(j)
jj

.

Problems

P23. (0.5p) Write down the elimination matrices used in Example 1.6 and
compute the corresponding LU-decomposition

P24. (0.5p) Write the LU decomposition corresponding to Example 1.7.

P25. (2p) Modify the definition of function lu to use column pivoting instead
of row pivoting.

P26. (2p) Write a recursive implementation of the function [P,L, U ] = lu(A)
in Matlab. Device a test verifying that your decomposition is correct.

P27. (2p) Modify the recursive implementation of function lu to utilise the
update strategy.
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1.7 Cholesky factorisation

This section gives existence proof for the Cholesky factorisation, which should
be studied with care. The left-looking variant of the Cholesky decomposition
is included because it yields a simpler formula for computing entries of the
Cholesky factor and can be skipped.

Symmetric matrix A ∈ Rn×n, A = AT is also positive definite if there
exists α > 0 such that

xTAx ≥ α‖x‖22 for any x ∈ Rn. (1.26)

In this section, we prove that every such matrix has a Cholesky decomposi-
tion:

Theorem 1.1. Let A ∈ Rn×n be a symmetric and positive definite. Then
there exists a lower triangular matrix L ∈ Rn×n such that A = LLT .

The matrix L is called as the Cholesky factor of A. We prove Theorem 1.1
using induction with respect to the dimension of the matrix, block matrix
notation, and the following technical result:

Lemma 1.3. Let F ∈ Rn×m have a trivial null-space and A ∈ Rn×n be a See video proof of this
lemma in Youtubesymmetric and positive definite matrix. Then the m ×m matrix F TAF is

positive definite.

Note that by the rank-nullity Theorem it holds that m ≤ n.

Proof. As A is s.p.d. there exists α > 0 such that

xTF TAFx ≥ αxTF TFx for any x ∈ Rn. (1.27)

As F TF is symmetric, F TF = UΛUT where U ∈ Rm×m, U =
[
u1 · · · um

]
is unitary and Λ ∈ Rm×m, Λ = diag(λ1, . . . , λm) is a diagonal matrix. Ma-
trix F TF has the expansion

F TF =
m∑
i=1

λiuiu
T
i . (1.28)

As eigenvectors {ui} are orthonormal and N(F ) = {0}, it follows that λi =
uTi F

TFui = ‖Fui‖22 > 0. Using (1.28) and estimating λi from below by
λmin := mini∈{1,...,m} λi gives

xTF TFx =

m∑
i=1

λi(x
Tui)

2 ≥ λmin
m∑
i=1

(xTui)
2 = λminx

Tx.

Noticing that λmin > 0 and using (1.27) completes the proof.

https://youtu.be/oljXDYZeMMQ
https://youtu.be/oljXDYZeMMQ
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proof of Theorem 1.1. The proof proceeds by induction with respect to the
dimension n. Base step n=1: A ∈ R, A > 0. Hence, L =

√
A.

Induction Assumption: The claim holds for n = k

Induction step: Let A ∈ R(k+1)×(k+1) and split

A =

[
a11 aT21
a21 A22.

]
where a11 ∈ R, a21 ∈ Rk and A22 ∈ Rk×k. Let

E =

[
1 0

−a−111 a21 I

]
.

By direct calculation

EAET =

[
a11 0

0 A22 − a21a
−1
11 aT21

]
.

Before applying the induction assumption to the matrix A22 − a21a
−1
11 aT21,See video on existence

proof of Cholesky fac-
torisation in Youtube

we have to show that it is positive definite. Observe that

(
A22 − a21a

−1
11 aT21

)
=
[

0
k×1

I
k×k

]
EAET

[
0
k×1

I
k×k

]T
(1.29)

As both
[
0 I

]T
and E have trivial null-spaces, so does F = ET

[
0 I

]T
.

Hence by (1.29) and Lemma 1.3, A22 − a21a
−1
11 aT21 is positive definite. Ap-

plying the induction assumption gives A22 − a21a
−1
11 aT21 = L2L

T
2 , where

L2 ∈ Rk×k is a lower triangular matrix. Note that a11 = eT1Ae1 > 0.
Hence,

EAET =

[
a11 0

0 A22 − a21a
−1
11 aT21

]
=

[√
a11 0
0 L2

] [√
a11 0
0 LT2

]
.

Inverting E gives

L =

[
1 0

a−111 a21 I

] [√
a11 0
0 L2

]
=

[√
a11 0
a21√
a11

L2

]
(1.30)

https://youtu.be/iThHIJERAF0
https://youtu.be/iThHIJERAF0
https://youtu.be/iThHIJERAF0
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The above proof is constructive, this is, it also gives a method for com-
puting L.

The function L = rchol(A) returns the Cholesky factorisation of a s.p.d.
matrix A ∈ Rn×n.

For n = 1, rchol(A) =
√
A.

For n > 1, we use recursive definition. Split A as

A =

[
a11 aT21
a21 A22

]
and let L2 = rchol(A22 −

a21aT
21

a11
).

By (1.30) we have

rchol(A) =

[√
a11 0
a21√
a11

L2

]

Similar to functions triusolve and lu, function rchol can be implemented
using recursive function calls or using the update strategy. The implemen-
tation utilising update strategy is called as the down-looking Cholesky fac-
torisation because the lower right corner is updated on each step of the
algorithm.

There exist (at least) two other strategies for computing the Cholesky
factorisation. The difference between these variants is the order in which
the matrix elements are accessed. One has to choose the best strategy for
each sparse matrix storage format and computer architecture. For example,
the down-looking variant accesses data column wise and works well with
compressed column storage format.

To derive the left-looking Cholesky factorisation, we split

L =


#
lTi lii
# # #
lTj lji # #

# # # # #

 and A =


# sym.
aTi aii
# # #
aTj aji # #

# # # # #

 .
where indices i and j refer to rows i and j of matrices L and A. Computing
the matrix product LLT gives

#
lTi lii
# # #
lTj lji # #

# # # # #




# li # lj #
lii # lji #

# # #
# #

#

 =


# sym.
# lTi li + l2ii
# # #
# lTj li + ljilii # #

# # # # #

 .
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Using the relation A = LLT yields

lTi li + l2ii = aii and lTj li + ljilii = aji. (1.31)

Note that the entry lii is not uniquely defined by (1.31). The usual choice,
lii ∈ R, lii > 0, gives the formulas

lii =

√√√√aii −
i−1∑
k=1

l2ik and lji =
1

lii
(aji −

i−1∑
k=1

likljk) for j > i (1.32)

We use (1.32) in Section 1.8.2 to the study location of non-zero entries of L.

1.7.1 Additional material

A different inductive existence proof for the Cholesky factorisation is
outlined in blog posting What Is Choklesky Factorisation.

A survey on Cholesky factorisation aimed for computer scientist is
given in

Nicholas J. Higham. Cholesky factorization. WIREs Computational
Statistics, 1(2):251–254, 2009

1.7.2 Problems

P28. (1p) Let A ∈ Rn×n be s.p.d.

(a) Starting from the definition (1.26), show that aii > 0 and A is
invertible. Hint : Show that system Ax = 0 has only zero solution,
i.e., N(A) = {0}.

(b) Show that all eigenvalues of A are positive.

(c) Assume, that A also satisfies A = F TF for some F ∈ Rn×n. Show
that F is invertible.

P29. (2p)

(a) Compute by hand the Cholesky decomposition of

1 2 2
2 8 4
2 4 15

.

(b) Show that the matrix

15 2 4
2 1 2
4 2 8

 is positive definite.

https://nhigham.com/2020/08/11/what-is-a-cholesky-factorization/
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P30. (2p) Write a recursive implementation of function rchol.

P31. (2p) Modify your recursive implementation of rchol to use the update
strategy.

P32. (1p) Let F ∈ Rn×n and A = F TF .

(a) Show that ‖A‖2 = ‖F‖22. Hint: Use the definition of operator

norm to obtain the estimates ‖A‖2 ≤ ‖F‖22 and ‖F‖2 ≤ ‖A‖1/22 .

(b) Validate (a) by numerical examples.

P33. (2p) Let AN ∈ RN×N be the 1D-finite difference matrix

AN =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

Define matrices An ∈ Rn for n ∈ {N − 1, . . . , 1} as follows. Split
An ∈ Rn×n for n ∈ {N, . . . , 2} as

An =

 αn
1×1

aTn

an
(n−1)×1

Ân
(n−1)×(n−1)


and set An−1 = Ân − anaT

n
αn

.

(a) Compute the block matrix product to verify that An can be fac-
torised as

An =

[√
αn 0
an√
αn

I

] [
1 0
0 An−1

][√
αn

aT
n√
αn

0 I

]

(b) Use induction to show that

An =


1 + 1

(N+1−n) −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

 for n ∈ {N, . . . , 1}

(c) Give a formula for the Cholesky factor of AN .
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1.8 Sparse Cholesky Factorisation

This section demonstrates that the Cholesky factor of a sparse matrix can
be dense and that in some cases sparse factor can be obtained by a suitable
symmetric permutation. Core content.

Let L be a Choklesky factor of a sparse s.p.d. matrix A. In this Section,
we are study the location of the non-zero entries of L. Observe that L is anSee video on sparse

Cholesky factorisation
in Youtube

invertible lower triangular matrix, and thus lii 6= 0.

Entries lij of L satisfying

lij 6= 0 and aij = 0

are called fill-in. Fill-in increases the amount of memory required to store
L as well as the time required to compute it’s entries. To save computa-
tional resources, fill-in is reduced by permuting rows and columns of matrix
A before computing it’s the Cholesky factorisation. We call the resulting
factorisation

P TAP = LLT

where P ∈ Rn×n is a fill-in minimising permutation and L ∈ Rn×n a lower
triangular matrix as the sparse Cholesky factorisation.

Example 1.8. Consider

A =


1 1 1 1 1
1 10 0 0 0
1 0 10 0 0
1 0 0 10 0
1 0 0 0 10

 .

The Cholesky factor of A is

L =


1 0 0 0 0
1 3 0 0 0
1 −0.33333 2.9814 0 0
1 −0.33333 −0.37268 2.958 0
1 −0.33333 −0.37268 −0.42258 2.9277


Observe, that L is a full matrix. The fill-in is reduced by permuting the
entries of A. In our example, changing row 1 to row 5 and column 1 to

https://youtu.be/z9NNrKxQmPE
https://youtu.be/z9NNrKxQmPE
https://youtu.be/z9NNrKxQmPE
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column 5 gives

P TAP =


10 0 0 0 1
0 10 0 0 1
0 0 10 0 1
0 0 0 10 1
1 1 1 1 1

 , (1.33)

where P is the permutation matrix corresponding to permutation vector[
5 2 3 4 1

]
. The Cholesky factor of P TAP is

L̃ =


3.1623 0 0 0 0

0 3.1623 0 0 0
0 0 3.1623 0 0
0 0 0 3.1623 0

0.31623 0.31623 0.31623 0.31623 3.0984

 .

The factor L̃ does not have any fill-in.

Finding an optimal permutation that minimizes the fill-in is an NP -hard
problem, hence, heuristics are used instead. In Section 1.8.2, we discuss
minimal degree-ordering, which is a method for finding fill-in reducing per-
mutations by utilising an efficient method for determining the location of
non-zero entries of L.

1.8.1 Problems

P34. (2p) Let

A =

[
a11 aT21
a21 I

]
for a11 ∈ R,a21 ∈ Rn−1.

(a) Show that the matrix A is positive definite if a11 > ‖a21‖22. Hint:
use the definition (1.26) with suitable splitting of x.

(b) Consider the linear system Ax = e1. Decompose x =
[
x1 xT2

]T
,

where x1 ∈ R and x2 ∈ Rn−1. Show that the solution satisfies

(a11 − aT21a21)x1 = 1 and x2 = −a21x1.

1.8.2 Non-zero structure of the Cholesky factor

This section gives tools for computing non-zero entres of L without knowing
their exact values. These tools are then used to construct fill-in reducing
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permutations. Core content.

The Cholesky factorisation of a sparse matrix is computed in two steps:
First, symbolic factorisation step constructs a fill-in reducing permutation
and finds the location of non-zero entries of the Cholesky factor. The lo-See video on graph as-

sociated to matrix in
Youtube

cation of nonzero entries is used to set up sparse matrix data structure for
storing L. The entries of the Cholesky factor are then computed in the
numerical factorization step.

The location of non-zero entries in the Cholesky factor of A ∈ Rn×n is
predicted from the undirected graph G(A) = (V(A), E(A)) consisting of a
set of vertices V(A) = {1, . . . , n} and a set of edges

E(A) = { (i, j) | aij 6= 0 i, j = 1, . . . , n and i > j }.

This is, vertices i and j of the graph G(A) are connected by an edge if the
entry aij is nonzero.

Example 1.9. Let

A1 =


1 1 1 1 1
1 10 0 0 0
1 0 10 0 0
1 0 0 10 0
1 0 0 0 10

 (1.34)

and

A2 =



20 0 1 1 1 1 0
0 20 1 1 0 0 1
1 1 20 0 0 0 0
1 1 0 20 0 0 0
1 0 0 0 20 0 0
1 0 0 0 0 20 0
0 1 0 0 0 0 20


(1.35)

The graphs corresponding to matrices A1 and A2 are visualized in Fig. 1.5

Off-diagonal entries of the Cholesky factor L are computed using Eq. (1.32)
as

lij =
1

ljj
(aij −

j−1∑
k=1

likljk), when i > j. (1.36)

Thus the entry lij can be non-zero (Possible numerical cancellations are
neglected in the following) if

aij 6= 0 (1.37)

https://youtu.be/OGj37Wmcfmw
https://youtu.be/OGj37Wmcfmw
https://youtu.be/OGj37Wmcfmw
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Figure 1.5: Graphs corresponding to the matrices given in (1.34) and (1.35),
respectively.

or

ljk 6= 0 and lik 6= 0 for some k < j. (1.38)

Based on equation (1.37), the number of nonzeros in L will always be greater
or equal to the number of nonzeros in A.

Before proceeding, we need some notation. We call the ordered set See video on graph nota-
tion in Youtubeof vertices (v1, v2, . . . , vk) ⊂ V(A) as a path, if (vi, vi+1) ∈ E(A) for i ∈

{1, . . . , k − 1}. Vertex x ∈ V(A) is said to be reachable from vertex y ∈ V(A)
via set S ⊂ V(A), if there exists a path (y, v1, . . . , vk, x) satisfying4 vi ∈ S
for i ∈ {1, . . . , k}. The reachable set of y ∈ V(A) through S ⊂ E(A) is
defined as

Reach(y, S) = {x ∈ V(A) \ S | x is reachable from y via S }. (1.39)

Examples of path and reachable set are depicted in Figure 1.6.

The edges of G(L + LT ) corresponding to non-zero off-diagonal entries See video proof of the
following Theorem in
Youtube.

of L are characterized by the following Theorem.

4to make the presentation simpler, we abuse notation and use the same notation also
for paths (y, x) and (x, v1, y).

https://youtu.be/CJUlejYY6xw
https://youtu.be/CJUlejYY6xw
https://youtu.be/57u2gy6ZIKI
https://youtu.be/57u2gy6ZIKI
https://youtu.be/57u2gy6ZIKI
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Figure 1.6: Path (5, 1, 3, 2, 7) is marked in red. Reachable set of vertex 2 via
S = {4} is {1, 3, 7}.

Theorem 1.2. Let A ∈ Rn×n be a s.p.d. and L the Cholesky factor of A.
Then

E(L+ LT ) ⊂ { (i, j) | i ∈ Reach(j, {1, . . . j − 1}) }

Recall that diagonal entries of L are always nonzero as L is an invertible
lower triangular matrix. These entries are not edges of G(L+ LT ).

Proof. Let i > j and (i, j) ∈ E(L + LT ). Then lij 6= 0. We proceed by
induction with respect to j.

Base case: j = 1 If j = 1, li1 is nonzero iff ai1 6= 0.

Induction assumption: Assume that the claim hods for any j < t.

Induction step: Let j = t. Then lij 6= 0 if aij 6= 0 or there exists
index k < j such that lik 6= 0 and ljk 6= 0. By induction assumption,
there then exists paths (k, v1, . . . , vl, i) and (k, v̂1, . . . , v̂m, j) satisfying vq <
k for q ∈ {1, . . . , l} and v̂q̂ < k for q̂ ∈ {1, . . . ,m}. As paths can be
”walked” in both directions, there also exists path (i, vl, . . . v1, k). Thus,
(i, vl, . . . v1, k, v̂1, . . . , v̂m, j) is a path between vertices i and j between nodes
via vertices with index smaller than t.

A set including edges E(L+LT ) is computed by finding the reachable set for
ever node of V(A). Such computation can be implemented as a depth-fist
search (DFS). A naive example implementation is given below.See Wikipedia for more

information on DFS

https://en.wikipedia.org/wiki/Depth-first_search 
https://en.wikipedia.org/wiki/Depth-first_search 
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% Call as : R = my reach(A, v, S)
%
% A is a matrix, v is the current node, S is a vector of nodes.
%
function [R,visited] = my reach(A, v, S, R, visited)

if(nargin == 3)
R = [];
visited(1:size(A,2)) = false;

end

visited(v) = true;

edges = find( abs( A(:,v)) > 0);

if( isempty(S))
R = setdiff(edges,v);
return;

end

for w=edges(:)'
if( not(visited(w)))

if( not(ismember(S,w)) )
R = [R w];

else
[R,visited] = my reach(A,w,S,R,visited);

end
end

end
end

In the worst case, the cost of computing single reachable set using DFS
algorithm is O(|N(A)| + |E(A)|). Due to this potentially high cost, more
efficient methods have been developed for computing the location of non-zero
entries of L.

Example 1.10. Consider the matrix A2 in (1.35). The off-diagonal non-
zero entries of the Cholesky factor are obtained as See video on this exam-

ple on Youtube
• off-diagonal non-zeros on column 1 are reach(1, ∅) = {3, 4, 5, 6}.

• off-diagonal non-zeros on column 2 are reach(2, {1}) = {3, 4, 7}

• off-diagonal non-zeros on column 3 are reach(3, {1, 2} = {4, 5, 6, 7}

• off-diagonal non-zeros on column 4 are reach(4, {1, 2, 3}) = {5, 6, 7}

• off-diagonal non-zeros on column 5 are reach(5, {1, 2, 3, 4}) = {6, 7}

https://youtu.be/mPU6-nihORA
https://youtu.be/mPU6-nihORA
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• off-diagonal non-zeros on column 6 are reach(6, {1, 2, 3, 4, 5}) = {7}

The non-zeros of the computed factor are

× 0 0 0 0 0 0
0 × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× 0 × × × 0 0
× 0 × × × × 0
0 × × × × × ×


.

1.8.3 Problems

P35. (2p) Consider the matrix A ∈ R5×5 such that

A = zeros(5);
A(1,2) = 1; A(2,3) = 1;
A(2,5) = 1; A(3,4) = 1;
A = 100*eye(5) + A + A';

(a) Draw the graph G(A)

(b) For each vertex i ∈ V(A) compute the set reach(i, {1, . . . , i− 1}).
Use my reach.m to validate your answer.

(c) Predict the location of non-zero entries in the Cholesky factor of
A.

(d) Compute the Cholesky factorization of A and validate (c)

P36. (1p) Let s.p.d. A ∈ Rn×n be a banded matrix with bandwidth b ∈ N.
This is,

aij = 0 if i > j + b or i < j − b.

(a) Let n = 10 and b = 2. Draw the dependency graph G(A).

(b) Use G(A) to predict the location of nonzero entries of the corre-
sponding Cholesky factor L.

1.8.4 Minimum degree ordering

This section outlines how minimum degree ordering is used to construct a
fill-in reducing permutation. Core content.
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Minimum degree (MD) ordering is a widely used heuristic for finding a
fill-in reducing permutation for the matrix A. The MD method constructs
a permutation vector p ∈ Rn by choosing entry pi from the set of free
indices {1, . . . , n} \ {p1, . . . , pi−1} so that the number of non-zero entries
that appear in the ith column of L is minimised. The number of non-zero
entries on column i does not depend on entries {pi+1, . . . , pn} and can be See video on MD on

Youtubecomputed using the my reach.m function. A naive implementation is given
below.

% Construct a fill-in reducing permutation vector for
% A using minimum degree ordering method. (this is a naive example
% implementation)

function p = my md(A)
n = size(A,1);
p = 1:n;

for i=1:(n-1)
i
% try all remaining entries as entry i
nnzLi = zeros(1,n);
for j=(i+1):n

tmp = p; tmp(i) = p(j); tmp(j) = p(i);

nnzLi(j) = length(unique(my reach(A(tmp,tmp), i, [1:(i-1)])));
end
% choose permutation minimising nnz in column i.
[~,I] = min(nnzLi((i+1):n));
I = I(1)+i;
pi = p(i); p(i) = p(I(1)); p(I) = pi;

end

Example 1.11. Consider the matrix

A =


1 1 1 1
1 10 0 0
1 0 10 0
1 0 0 10

 .

Initially, p =
[
1 2 3 4 5

]
. In the first step of MD-algorithm, we test

permutations

https://youtu.be/J32hqpD3Nz8
https://youtu.be/J32hqpD3Nz8
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Figure 1.7: The first step of the MD - algorithm

Figure 1.8: The second step of the MD - algorithm
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1

 .
The resulting number of non-zeros in L(2 : end, 1) is computed using func-
tion my reach operator, see Fig. 1.7. In Fig. 1.7 and 1.8, letters {a, b, c, d, e}
refer to entries {1, 2, 3, 4, 5} of the original matrix that after permutation
have indices larger than 1 and 2, respectively. The alternative choices give
5, 2, 2, 2, 2 - nonzero entries in the first column. According to this, p1 = 2.
The process is then repeated for p2 see Fig. 1.8. Different options give
4, 2, 2, 2 - nonzero entries in L(3 : end, 2). Accordingly, we set p2 = 3.
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Computing the number of non-zero entries in the column i, i.e. evalua-
tion of the my reach is the most expensive part of the MD method. This
cost is reduced in the approximate minimum degree (AMD) algorithm that
approximates the number of non-zeros in the column i. As AMD is much
faster and yields almost as good orderings as MD, latest versions of Matlab
only implement it.

1.8.5 Problems

P37. (2p)

(a) Find a fill-in reducing permutation P for the matrix A2 in (1.35)
using function my md.

(b) Compute the number of non-zeros in the Cholesky factors of A2

and P TA2P .

(c) Repeat (a) and (b) using permutation generated by Matlab func-
tion amd.
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1.9 Numerical stability

Most scientific computing is done using double precision floating-point num-
bers that have a discrete set of possible values F ⊂ R. The set F is not a
vector space as it is not closed with respect to addition or multiplication.
This is x, y ∈ F does not necessarily imply x + y ∈ F. Thus, the result of
arithmetic operations conducted using double precision floating-point rep-
resentation has to be rounded to the closest element of F. In this section, See video introduction

to numerical stability in
Youtube

we conduct numerical stability analysis and study how the resulting round-
off errors affect the accuracy of solving linear systems using the Cholesky
factorisation.

In the following, we write

fl([expr])

when expression expr is evaluated in floating-point representation. All other
expressions are evaluated exactly. If the order of evaluation is important, it
will be explicitly stated.

Let L̂ ∈ Fn×n be the (approximate) Cholesky factor of a matrixA ∈ Fn×n
computed using floating-point numbers. Due to the inaccurately computed
arithmetic operations, there holds that

L̂L̂T = A+ δA, (1.40)

53

https://youtu.be/A1_cVZ0_9bs
https://youtu.be/A1_cVZ0_9bs
https://youtu.be/A1_cVZ0_9bs
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where δA ∈ Rn×n is a matrix containing round-off errors. Consider the
linear system Ax = b and let L ∈ Rn×n be the exact Cholesky factor of A.
Recall, that x is obtained by solving

LLTx = b (1.41)

in two steps, Ly = b, and LTx = y. Replacing the exact factor with
numerically computed L̂, as happens in practical computations, we solve

L̂L̂T x̂ = b (1.42)

instead of (1.41). Using the back-substitution method in floating-point rep-
resentation gives the (approximate) solution x̃ ∈ F to (1.42). The resulting
error satisfies

‖x− x̃‖ ≤ ‖x− x̂‖+ ‖x̂− x̃‖.

Error estimates for factorisation error ‖x − x̂‖ and back-substitution error
‖x̂ − x̃‖ are given after we have developed sufficient tools. To outline the
approach, consider the factorisation error x− x̂. By (1.40), x̂ satisfies

(A+ δA)x̂ = b.

We conduct backward error analysis where a bound for the relative error
‖x − x̂‖‖x‖−1 is obtained by first estimating the norm of matrix δA and
then using perturbation theory of linear systems. Similar approach is used
to estimate back-substitution error.

This section is organised as follows. First, we discuss perturbation
theory. Then we give a mathematical model for rounding errors related
to floating-point arithmetic operations and derive useful technical results.
Next, we conduct backward error analysis for back-substitution of 2 × 2-
upper triangular matrices and finally for the Cholesky factorization.

1.9.1 Perturbation theory

This section is a brief review on perturbation analysis of linear systems. LetSee video on operator
norms in Youtube ‖ · ‖ be a vector norm and ‖ · ‖op the induced the operator norm

‖A‖op := max
x∈Rn

x 6=0

‖Ax‖
‖x‖

. (1.43)

Following the standard convention in linear algebra, we drop the subscribt
from (1.43) and denote ‖ · ‖op = ‖ · ‖. Recall the fundamental properties of
operator norms: for any A,B ∈ Rn×n and x ∈ Rn it holds that

https://youtu.be/di3ix5pj0Ag
https://youtu.be/di3ix5pj0Ag
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(i) ‖Ax‖ ≤ ‖A‖‖x‖

(ii) ‖AB‖ ≤ ‖A‖‖B‖ (sub-multiplicaticity)

(iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

(iv) ‖A+B‖ ≥ |‖A‖ − ‖B‖| (reverse triangle inequality)

Let A ∈ Rn×n and b ∈ Rn, and consider the problem: find x ∈ Rn such
that

Ax = b. (1.44)

Assume that the matrix A is invertible, i.e., A ∈ Rn×n has an inverse A−1 ∈
See video introduction
to perturbation analysis
in Youtube.

Rn×n. The perturbed linear equation is

(A+ δA)x̂ = b + δb, (1.45)

where perturbations δA ∈ Rn×n and δb ∈ Rn. In perturbation analysis,
the aim is to relate the error ‖x− x̂‖ to the size of perturbations ‖δb‖ and
‖δA‖. The general intuition is that ‖δA‖ and ‖δb‖ are small compared to
‖A‖ and ‖b‖, respectively.

To derive the perturbation estimate, we substract (1.44) and (1.45), to
obtain a linear system that determines the error e := x̂− x,

(A+ δA)(x̂− x) = δb− δAx. (1.46)

We begin by stability estimate for this system

Lemma 1.4. Let ‖ · ‖ be a vector norm and use the same notation for the
See video proof of this
stability estimate in
Youtube

induced operator norm. Let A, δA ∈ Rn×n satisfy ‖A−1‖‖δA‖ < 1. Then
the linear system: find e ∈ Rn satisfying

(A+ δA)e = b (1.47)

has a unique solution and

‖e‖ ≤ ‖A−1‖
1− ‖A−1‖‖δA‖

‖b‖. (1.48)

Proof. By rearranging terms and multiplying with A−1 equation (1.47) gives

e = −A−1δAe +A−1b.

Hence ‖e‖ ≤ ‖A−1‖‖A‖‖e‖ + ‖A−1‖‖b‖. Combining terms related to ‖e‖
and dividing with (1−‖A−1‖‖A‖) > 0 gives (1.48). Choosing b = 0 in (1.48)
yields e = 0. Hence N(A+ δA) = {0} and (1.47) has a unique solution.

https://youtu.be/qR5T3DyvWbs
https://youtu.be/qR5T3DyvWbs
https://youtu.be/qR5T3DyvWbs
https://youtu.be/2SfRZ7Y7qnQ
https://youtu.be/2SfRZ7Y7qnQ
https://youtu.be/2SfRZ7Y7qnQ
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The following theorem relates the (relative) error to the relative sizes of
the perturbations, i.e. ‖δb‖/‖b‖ and ‖δA‖/‖A‖, and the condition number
of A, defined as

κ(A) := ‖A‖‖A−1‖.

Take note that the condition number of a matrix depends on the considered
(operator) norm.

Theorem 1.3. Suppose the assumptions of Lemma 1.4 are valid. Then it
See video proof of this
perturbation Theorem
in Youtube

holds that
‖x̂− x‖
‖x‖

≤ κ(A)

1− ‖δA‖‖A‖ κ(A)

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
(1.49)

where κ(A) = ‖A‖‖A−1‖.

Proof. Application of Lemma 1.4 to (1.46) yields

‖x̂− x‖ ≤ ‖A−1‖
1− ‖δA‖‖A−1‖

(‖δb‖+ ‖δAx‖) .

Dividing by ‖x‖ and using the estimate ‖δAx‖ ≤ ‖δA‖‖x‖ gives

‖x̂− x‖
‖x‖

≤ ‖A−1‖
1− ‖δA‖‖A−1‖

(
‖δb‖
‖x‖

+ ‖δA‖
)

=
‖A‖‖A−1‖

1− ‖δA‖‖A‖ ‖A−1‖‖A‖

(
‖δb‖
‖A‖‖x‖

+
‖δA‖
‖A‖

)
,

(1.50)

where the latter step is mere algebraic manipulation. Since ‖b‖ = ‖Ax‖ ≤
‖A‖‖x‖, we finally obtain

‖x̂− x‖
‖x‖

≤ ‖A−1‖‖A‖
1− ‖δA‖‖A‖ ‖A−1‖‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
. (1.51)

Substituting the definition of the condition number κ(A) completes the
proof.

1.9.2 Problems

P38. (1p)

(a) Let A ∈ Rn×n and denote the singular values of A as σ1 ≥ σ2 ≥
. . . ≥ σn. Show that κ2(A) = ‖A−1‖2‖A‖2 = σ1

σn
.

https://youtu.be/A_YwTh4hDPo
https://youtu.be/A_YwTh4hDPo
https://youtu.be/A_YwTh4hDPo
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(b) Let

A1 =

[
2 1
1 2

]
and A2 =

[√
2 0
1√
2

√
3
2

]
.

Compute the condition numbers of A1 and A2 in 2-norm.

P39. (2p) Let

A =

[
a11 aT21
a21 I

]
for a11 ∈ R,a21 ∈ Rn−1.

(a) Let sub-space X := {x ∈ Rn−1 | aT21x = 0 } have a basis {v1}n−2k=1 .
Verify that {[

0
v1

]
, · · · ,

[
0

vn−2

]}
.

are eigenvectors of A corresponding to eivenvalue 1.

(b) As A is symmetric it’s eigenvectors can be chosen as an orthogonal
set. Thus, we choose the two remaining eigenvectors u1,u2 of A
as ui = V ti for

V =

[
1 0
0 a21
‖a21‖

]
∈ Rn×2, ti ∈ R2, and i ∈ {1, 2}.

Verify that ui satisfies

uTi

[
0
vj

]
= 0 for i ∈ {1, 2} and j ∈ {1, . . . , n− 2}.

(c) The eigenvalues λ1 and λ2 corresponding to u1 and u2 can be
computed as follows: as AV ti ∈ spanV there holds that

V TAV ti = λiti for i ∈ {1, 2}. (1.52)

Use matlab to compute λ1 and λ2 from (1.52) when n = 10,

a11 = 10 and a21 =
[
1 1 · · · 1

]T
. What is the correspond-

ing condition number ?

P40. (2p) Let A ∈ Rn×n and u,v ∈ Rn, ‖u‖2 = ‖v‖2 = 1. Consider two
problems : find x, x̂ ∈ Rn such that(

A+ uvT
)
x̂ = b

Ax = b
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(a) Show that w = x− x̂ satisfies the equation(
A+ uvT

)
w = uvTx.

(b) Show that w = αA−1u for some α ∈ R.

(c) Using (a) and (b), show that

α =
vTA−1b

1 + vTA−1u
and x̂ = A−1b− A−1uvTA−1b

1 + vTA−1u
.

P41. (2p) Let A ∈ Rn×n be invertible and have a singular value decompo-
sition A = UΣV T , where Σ = diag(σ1, . . . , σn) are the singular val-
ues. In addition, let δA ∈ Rn×n have the singular value decomposition
δA = −UδΣV T , where δΣ = diag(δσ1, . . . , δσn).

(a) Show that the error e defined in (1.47) satisfies

e = V Σ̂UTb for Σ̂ = diag(σ−11 (1− σ−11 δσ1)
−1, . . . , σ−1n (1− σ−1n δσn)−1).

(b) Show that there exists δA and b such that the estimate in (1.48)
is equality.

1.9.3 Modelling floating point errors

In this section, we discuss floating-point representation and derive a model
for arithmetic operations of floating-point numbers. We use the notation

(an · · · a1a0 · c1c2c3 · · · )b

for the base-b number

(an · · · a1a0 · c1c2c3 · · · )b =

n∑
k=0

akb
k +

∞∑
k=1

ckb
−k.

The symbol · a called as radix point and it corresponds to the decimal point
in the base-10 system. Changing the base of a number is done easily by

See video on fp. repre-
sentation in Youtube

using the modulo-operation, see the example code below.

% p>0 indicates how many numbers there are after the radix point.
% Number is not rounded, but cut-off is used instead.

function str = my dec2bin(dec,p)

https://youtu.be/o7FA5g8kyh8
https://youtu.be/o7FA5g8kyh8
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n = max([floor(log2(dec))+1, 0]);
str = '';
for i=1:(n+p)

i
remainder = mod(dec,2ˆ(n-i));

if(remainder == dec)
bit = '0';

else
bit = '1';

end

if(i==(n+1))
str(end+1) = '.';
str(end+1) = bit;

else
str(end+1) = bit;

end
dec = remainder;

end

Floating-point numbers are based on the (normalised) scientific notation

(−1)SMbE , (1.53)

where S ∈ {0, 1} is the sign, b is the base, and E is the exponent. The term
M ∈ [1, b) is a base-b number with N -significant figures called as significand,
mantissa, or factor. The term significant figures mean the digits that carry
information. The rules are (in the following example significant figures are
marked in red):

• All nonzero number are significant.

• Leading or trailing zeros are not significant, e.g., 0.00123,and 12300

• All zeros between two nonzero numbers are significant, e.g., 0.120300.

Same rules hold in any base-b system. Observe that M ≥ 1, hence M has
no leading zeros and is at most N digits long. The exponent has a limited
range, but this is not central for our application and it is not discussed in the
following. The number zeros has a special representation in floating point
system.

Observe that in binary number system, the signficand always is of the
form

(1 · c1c2c3 · · · )2 (1.54)

Hence, N + 1 significant figures can be represented by N bits.
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Example 1.12. Consider floating point number system with b = 10 and one
significant figure for M . This is,

M ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} .

The exponent determines where the decimal point is placed. For example,
π = 3.14 . . . is rounded to 3 and represented as 3 · 100 Similarly 0.022 =
2 · 10−2.

Example 1.13. Consider floating point number system with b = 2 and three
significant figures for M . This is,

M ∈ {(1.00)2, (1.01)2, (1.10)2, (1.11)2}

To determine representation of 3.14 in this floating point system, it is first
See video on Exam-
ple 1.12 numbers in
Youtube

written using binary numbers. There holds that

(3.14)10 = (11.00100011110101110001 · · · )2 ≈ (11.0)2

As the radix point is shifted one unit to right we obtain (3.14)10 ≈ (1.10)2 ·21.
Similarly,

(0.24)10 = (.0011110101110000101000 . . .)2 ≈ (.0100)2 = (1.00)2 · 2−2.

In scientific presentation (1.53), the resolution between numbers is not
constant. Each interval [bE , bE+1) is divided to sub-intervals according to
number of significant figures N used for the significand M . In base b, man-
tissa has (b−1)bN−1 values, hence on interval [bE , bE+1) the distance between
numbers is

(bE+1 − bE)

(b− 1)bN−1
= ubE where machine epsilon u =

1

bN−1
.

See illustration in Figure 1.9. For example, matlab uses double precision
floating point numbers where the significand is a binary number with 52
bits, i.e., N = 53, b = 2, and u = 2−52.

Roughly speaking, arithmetic operations in floating point number system
are conducted by calculating the operation in higher accuracy and then
rounding the result to closest floating point number.

Example 1.14. Consider the floating point number system with b = 2 and
three significant figures for M . We compute the sum

(1.10)2 · 21 + (1.00)2 · 2−2.

https://youtu.be/jovTQxK3txU
https://youtu.be/jovTQxK3txU
https://youtu.be/jovTQxK3txU
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0.5 1 2 4

0

Figure 1.9: Floating point numbers in the system b = 2, N = 3 between
1/2, 1, 2, 4. The resolution is different on intervals (1/2, 1),(1, 2),and (2, 4).

First these numbers are written using the same exponent. Then the man-
tissa’s are added.

(1100.00)2 · 2−2 + (1.00)2 · 2−2 = (1101.00)2 · 2−2

We round the mantissa upwards5 to three significant figures as (1101.00)2 ≈
(111)2. Thus, the result is (1.11)2 · 21.

Let a, b be two floating-point numbers and � denote some of the opera-
tions � = +,−, ∗, /. The exact value a � b is rounded to the either of the
closest two floating-point numbers. For simplicity, assume that a � b > 0. See video on Exam-

ple 1.14, spacing of
fp. numbers, and model
for fp. operations in
Youtube

Let E be such that a � b ∈ [bE , bE+1). The two floating point numbers
closest to a� b lie within the interval

(a� b− ubE , a� b+ ubE). (1.55)

As exponent E has somewhat complicated dependency on a�b, we estimate
bE ≤ a · b and use the extended interval

(a� b− ua� b, a� b+ ua� b). (1.56)

instead of (1.55). Writing interval (1.56) using an (unknown) parameter δ,
|δ| ≤ u we arrive to our model for arithmetic operations in floating-point
representation:

fl(a� b) = (1 + δ)(a� b) where � = +,−, ∗, /. (1.57)

This representation is valid independent on the sign of a� b.
Using (1.57) it is straightforward to study rounding errors in evaluation

of expressions such as fl(x1y1 + x2y2).
6

5The numbers (1100)2 and (1110)2 are equally close to (1101)2. Different tie breaking
rules can be used to choose which one to pick. We round upwards, but one can choose,
e.g., to pick the closest even number.

6When the order of evaluation for the expression is important, it is explicitly specified,
otherwise it is omitted, as is the case with x1y1 + x2y2.

https://youtu.be/pEbtFf5p_zw
https://youtu.be/pEbtFf5p_zw
https://youtu.be/pEbtFf5p_zw
https://youtu.be/pEbtFf5p_zw
https://youtu.be/pEbtFf5p_zw
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Example 1.15. Consider evaluation of expression fl(x1y1 + x2y2). The
model (1.57) gives for the two multiplicationsSee video on Exam-

ple 1.15 in Youtube
fl(x1y1) = (1 + δ1)x1y1 and fl(x2y2) = (1 + δ2)x2y2.

and for the summation

fl(x1y1+x2y2) = (1+δ1)fl(x1y1)+(1+δ2)fl(x2y2) = (1+δ3) [(1 + δ1)x1y1 + (1 + δ2)x2y2] .

Estimate for the width of the interval is obtained as

|fl(x1y1 + x2y2)− (x1y1 + x2y2)| ≤ |δ3 + δ1 + δ3δ1||x1y1|+ |δ3 + δ2 + δ3δ2||x2y2|
≤ (2u+ u2)(|x1y1|+ |x2y2|).

1.9.4 Additional material

1. Matlab uses double precision floating-point numbers. A good reference
on their working is Wikipedia

2. Most sources discussing double precision floating-point numbers men-
tion that the precision is 53 bits. Precision refers to accuracy of the
number system, which is bN/2, when proper rounding is used. For
more on the topic see Wikipedia

1.9.5 Problems

P42. (1p) Modify function my dec2bin to change representation of numbers
from base-10 system to base-b system for any b ∈ 2, . . . , 10.

P43. (2p)

(a) Write x1 = 345 and x2 = 1/3 using floating-point system with
b = 2 and N = 4.

(b) Compute the absolute error between xi and it’s floating point rep-
resentation x̂i for i ∈ {1, 2}.

(c) What is the machine epsilon, as defined in this chapter, of this
floating-point system?

(d) Compute the sum x̂1 + x̂2.

P44. (0.5p) Let a ∈ (1, 3). Find a0R and smallest u s.t. a = a0 + δ for some
|δ| ≤ u. Use this expression to determine intervals where the values of
the following expressions belong to.

(a) a2

(b) a2 + a

https://youtu.be/tY1WH85KkFE
https://youtu.be/tY1WH85KkFE
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Machine_epsilon
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1.9.6 Technical estimates

This section contains technical estimates that are used to simplify expres-
sions related to computations done using the floating-point model (1.57).
For example, the term (1 + δ1)(1 + δ2), where |δi| ≤ u for i = 1, 2 satisfies

(1− u)2 ≤ (1 + δ1)(1 + δ2) ≤ (1 + u)2.

However, it is not straightforward to intepret how large the interval [(1 −
u)2, (1 + u)2] is. To remedy this, we seek for β satisfying

(1− β) ≤ (1− u)2 ≤ (1 + δ1)(1 + δ2) ≤ (1 + u)2 ≤ (1 + β),

and write (1 + δ1)(1 + δ2) = (1 + θ) for |θ| ≤ β. In the next Lemma, we give
a simple expression for θ. See video proof for

Lemma 1.5 in Youtube
Lemma 1.5. Let n ∈ N,α ∈ R, α > 0, and nα < 1. Then there holds that

1− nα

1− nα
≤ (1− α)n and (1 + α)n ≤ 1 +

nα

1− nα
.

Proof. There holds that

(1 + α)n = 1 +

∫ α

0
n(1 + t)n−1 dt (1.58)

Estimating the integral as in Fig. 1.10 gives
∫ α
0 n(1 +α)n−1 ≤ nα(1 +α)n−1

so that
(1 + α)n ≤ 1 + nα(1 + α)n−1.

Rearranging the terms in the equation above leads to

(1 + α− nα)(1 + α)n−1 ≤ 1

Which gives

(1 + α)n−1 ≤ 1

1− (n− 1)α
= 1 +

(n− 1)α

1− (n− 1)α
.

Lower follows by observing that the second derivative of the function t 7→
(1 + t)n for n > 1 is non-decreasing and using result of P45.

Lemma 1.6. Let δ̂q, δp ∈ R be such that |δp| ≤ u and |δ̂q| ≤ u for all See video proof for
Lemma 1.6 in Youtubep = 1, . . . , n and q = 1, . . . , n̂. Then there holds that n̂∏

q=1

(1 + δ̂q)

 n∏
p=1

1

1 + δp

 = (1 + θ) where |θ| ≤ (n+ n̂)u

1− (n+ n̂+ 1)u
.

https://youtu.be/lHrMQmU0vn8
https://youtu.be/lHrMQmU0vn8
https://youtu.be/RrGWkwSXcVM
https://youtu.be/RrGWkwSXcVM
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Figure 1.10: The geometric idea in estimating the intergral in proof of
Lemma 1.5

Proof. Observe, that

1

1 + δp
= 1− δp

1 + δp
so that 1− u

1− u
≤ 1

1 + δp
≤ 1 +

u

1− u

as (1 + u) ≤ (1 + u
1−u), there holds that

(
1− u

1− u

)n+n̂
≤

 n̂∏
q=1

(1 + δ̂q)

 n∏
p=1

1

1 + δp

 ≤ (1 +
u

1− u

)n+n̂
.

Application of Lemma 1.5 completes the proof.

Example 1.16. Continuing the previous example, Lemma 1.6 gives

fl(x1y1 + x2y2) = (1 + θ12)x1y1 + (1 + θ22)x2y2.

For some θ12 and θ22 satisfying7

|θi2| ≤
2u

1− 3u
.

The error between exact and floating point number is estimated as

|x1y1 + x2y2 − fl(x1y1 + x2y2)| ≤
2u

1− 3u
(|x1y1|+ |x2y2|) .

7Slightly better estimate can be obtained by application of Lemma 1.5.
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Finally, we arrive to our final technical estimate. This estimate is useful
in studying floating point errors related to Cholesky factorisation or back
substitution.

Lemma 1.7. Let b, c ∈ R, x, y ∈ Rn. Assume that s = 1
b (c+

∑n
i=1 xiyi) is

evaluated in floating-point arithmetics as See outline of
Lemma 1.7 in Youtube

s = c;
for i=1:n

s = s + x(i)*y(i)
end
s = s/b

Then there holds that

b (1 + θn+1) fl(s) = c+
n∑
i=1

xiyi(1 + θi).

where |θi| ≤ (i+1)u
1−(i+2)u for i = 1, . . . , n+ 1.

Proof. Let us first show that computing the sum satisfies

fl(ŝ) =

c n∏
j=1

(1 + δj) +
n∑
i=1

xiyi(1 + δ̂i)
n∏
j=i

(1 + δj)


where |δ̂i| ≤ u and |δj | ≤ u. Denote the partial sums by ŝn. This claim is
proven using induction with respect to n.

Base case n = 1: By (1.57)

fl(ŝ1) =
(
c+ x1y1(1 + δ̂1)

)
(1 + δ1).

Induction assumption: assume now that the claim holds for n = k − 1,
this is,

fl(ŝk−1) = c
k−1∏
j=1

(1 + δj) +

k−1∑
i=1

xiyi(1 + δ̂i)
k−1∏
j=i

(1 + δj).

https://youtu.be/7UJ5r3s9jWM
https://youtu.be/7UJ5r3s9jWM
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Induction step: Let n = k and consider computing

fl(ŝk) =
(
sk−1 + xkyk(1 + δ̂k)

)
(1 + δk).

Using the induction assumption gives

fl(ŝk) = c

k−1∏
j=1

(1+δj)(1+δk)+

k−1∑
i=1

xiyi(1+δ̂i)

k−1∏
j=i

(1+δj)(1+δk)+xkyk(1+δ̂k)(1+δk).

The final division by b leads to

fl(s) =
1

b

c n+1∏
j=1

(1 + δj) +
n∑
i=1

xiyi(1 + δ̂i)
n+1∏
j=i

(1 + δj)


Dividing by

∏j
p=1(1 + δp) and multiplying with b gives now

b

j∏
p=1

(1 + δp)
−1fl(s) = c+

n∑
i=1

xiyi(1 + δ̂i)
i−1∏
j=1

(1 + δj)
−1

The proof is completed by application of Lemma 1.6.

1.9.7 Problems

P45. (1p) Let f : R 7→ R be a smooth function such that f
′

is increasing
function. In addition, let x0, α, δx0 ∈ R, δx0 > 0 be such that

f(x0 + α) ≤ f(x0) + δx0 .

Show that
f(x0 − α) ≥ f(x0)− δx0 .

Hint : expand f(x0 + α) and f(x0 − α) as in (1.58). Argue that∫ x0+α

x0

f ′(s) ds ≥ −
∫ x0−α

x0

f ′(s) ds.

P46. (2p) Let x,y ∈ Rn. Show that

fl(
∑

xiyi) =

n∑
i=1

xiyi(1 + δ̂i)

n∏
k=i

(1 + δk).

where δ1 = 0, |δk| ≤ u for k = 2, . . . , n and |δ̂i| ≤ u for i=1, . . . , n.
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P47. (2p) Following the notation and resulting assumptions of problem above;

(a) Assume that ‖x‖2, ‖y‖2 = 1. Show that |fl(
∑
xiyi) −

∑
xiyi| ≤

nu
1−nu .

Hint: practice with e.g. R3 vectors before generalizing to Rn. Use
result of problem P46.

(b) Let U, V ∈ Rn×n be unitary matrices. Show that fl(UV ) = UV +
E, where E ∈ Rn×n is such that |Eij | ≤ nu

1−nu .

1.9.8 Backward error analysis of back-substitution method

Let U ∈ F2×2, b ∈ F2, and consider the problem: find x ∈ R2 satisfying See outline of this sec-
tion in YoutubeUx = b, i.e., [

u11 u12
0 u22

] [
x1
x2

]
=

[
b1
b2

]
. (1.59)

In this section, we conduct backward error analysis for computing an ap-
proximate solution x̂ ∈ F to (1.59) using the back-substitution method
in floating-point representation. Our aim is to estimate the relative error
‖x‖−12 ‖x̂−x‖2. As we are not working with any particular problem setting,
all estimates are given in the ‖ · ‖2-norm.

The first step in backward error analysis is to use the model of floating-
point arithmetic operations in (1.57) to determine which linear system x̂
solves exactly. The back-substitution method computes x̂ as follows:

hat x2 = b2/u22; % solve x2
a = u12*hat x2; % compute update to the load
hat b1 = b1 - a; % update the load
hat x1 = hat b1/u11; % solve x1

For clarity, all arithmetic operations in the above script are conducted one- See derivation of equa-
tion for x̂ in Youtubeby-one. By model (1.57),

x̂2 = fl

(
b2
u22

)
= (1 + δ1)

b2
u22

. (1.60)

a = fl(u12x̂2) = (1 + δ2)u12x̂2 (1.61)

b̂1 = fl(b1 − a) = (1 + δ3)(b1 − a) = (1 + δ3)(b1 − (1 + δ2)u12x̂2) (1.62)

x̂1 = fl

(
b̂1
u11

)
= (1 + δ4)

b̂1
u11

(1.63)

=
1

u11
(b1 − u12x̂2(1 + δ2)) (1 + δ3)(1 + δ4) (1.64)

https://youtu.be/FJy8kHkSt7s
https://youtu.be/FJy8kHkSt7s
https://youtu.be/Y0xtLb5tlwc
https://youtu.be/Y0xtLb5tlwc
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for some |δi| ≤ u, i ∈ {1, . . . , 4}. Next, we modify (1.64) and (1.60) to find
δU ∈ R2×2 such that x̂ satisfies

(U + δU)x̂ = b.

Multiplying (1.60) by (1 + δ1)
−1u22 gives

u22
1 + δ1

x̂2 = b2. (1.65)

Multiplying (1.64) by (1 + δ3)
−1(1 + δ4)

−1u11 and rearranging the terms
yields

u11
(1 + δ3)(1 + δ4)

x̂1 + u12(1 + δ2)x̂2 = b1. (1.66)

Before proceeding, we simplify expressions (1.65) and (1.66). As 1
1+δ1

=

1− δ1
1+δ1

,

(1 + θ1)u22x̂2 = b2 for |θ1| ≤
u

1− u
. (1.67)

Application of Lemma 1.6 to (1.66) leads to

(1 + θ2)u11x̂1 + u12(1 + δ2)x̂2 = b1 for |θ2| ≤
2u

1− 3u
. (1.68)

By (1.65)-(1.68),

(U + δU)x̂ = b for δU :=

[
θ2u11 δ2u12

0 θ1u22

]
, (1.69)

where

|θ2| ≤
2u

1− 3u
, |θ1| ≤

u

1− u
, and |δ2| ≤ u. (1.70)

Thus, x̂ is the exact solution to the perturbed linear system (1.69). Per-
turbation estimate in Theorem 1.3 gives an upper bound for the relative
error,

‖x̂− x‖2
‖x‖2

≤ κ2(U)

1− κ2(U)‖δU‖2‖U‖2

‖δU‖2
‖U‖2

. (1.71)

Application of (1.71) requires estimate for the condition number κ2(U) and
the size of the relative perturbation ‖δU‖2‖U‖−12 . The condition numberSee video on estimating

the relative perturbation
in Youtube

depends on the (unknown) matrix U , hence it is computed numerically when
U is fixed. The size of the relative perturbation is estimated using the
following technical result:

https://youtu.be/Q0VwUzScm6Q
https://youtu.be/Q0VwUzScm6Q
https://youtu.be/Q0VwUzScm6Q
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Lemma 1.8. Let A ∈ Rn×n. Then there holds that

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2

where ‖A‖F :=
(∑n

i,j=1 |aij |2
)1/2

is the Frobenius-norm of A.

Using the Frobenius-norm allows us to obtain estimates for ‖U‖2 from entry-
wise estimates of δU .

Proof. Problem P48.

The Frobenius norm of δU defined in (1.69) satisfies

‖δU‖F =
(
|θ2|2 |u11|2 + |δ2|2|u12|2 + |θ2|2 |u22|2

)1/2
. (1.72)

The coeffcients in the RHS of (1.72) are estimated by their maximum as

|θ1|, |θ2|, |δ2| ≤
2

1− 3u
.

Hence,

‖δU‖F ≤
2u

1− 3u

(
|u11|2 + |u12|2 + |u22|2

)1/2
=

2u

1− 3u
‖U‖F .

Using Lemma 1.8 twice and dividing by ‖U‖2 gives

‖δU‖2
‖U‖2

≤ 2u

1− 3u

√
2. (1.73)

Application of Theorem 1.3 gives the relative error estimate

‖x− fl(x)‖2
‖x‖2

≤ κ2(U)

1− 2u
1−3u
√

2uκ2(U)

2u

1− 3u

√
2.

Assuming that κ(U)2u(1−3u)−1 � 1 and neglecting the higher-order terms
leads to the approximation

κ2(U)

1− 2u
1−3u
√

2uκ2(U)

2u

1− 3u

√
2 ≈ κ2(U)2

√
2u.

The error due to floating-point representation is relative to condition number
of matrix U . This is typical result in numerical stability analysis.
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1.9.9 problems

P48. (1p) Prove Lemma 1.8

P49. (1p) Let A, δA ∈ Rn×n satisfy |δAij | ≤ εij |Aij | for i, j ∈ {1, . . . , n}. In
addition, denote ε := maxi,j∈{1,...,n} |εij |. Show that

(i) ‖δA‖F ≤ ε‖A‖F
(ii) ‖δA‖1 ≤ ε‖A‖1
(iii) ‖δA‖∞ ≤ ε‖A‖∞.

Here ‖ · ‖F is the Frobenius norm and ‖ · ‖1, ‖ · ‖∞ are the operator
norms induced by the vector norms

‖x‖1 :=
n∑
i=1

|xi| and ‖x‖∞ := max
i∈{1,...,n}

|x|i (1.74)

for x ∈ Rn.

P50. (1p) Let A ∈ Rn×n and denote it’s floating-point representation by
Â ∈ Fn×n. The floating point representation satisfies

Âij = (1 + δij)Aij

for |δij | ≤ u and i, j ∈ {1, . . . , n}. Let x, x̂ ∈ Rn satisfy

Ax = b and Âx̂ = b

for some b ∈ Rn. Give estimate for the relative error ‖x− x̂‖2‖x‖−12 .

1.9.10 Numerical stability of Cholesky decomposition

Let A ∈ Fn×n be s.p.d., b ∈ Fn, and consider the problem: find x ∈ Rn
satisfying

Ax = b. (1.75)

As discussed in Section 1.9, solution x can be computed by first calculatingSee introduction to
numerical stability of
Cholesky factorisation
in Youtube

the Cholesky factorisation of A and then applying the back-substitution
method twice. The accuracy of a solution computed using this strategy in
floating-point representation is studied by separately analysing errors due
to Cholesky factorisation and back-substitution method.

https://youtu.be/WH4MUtBy7h0
https://youtu.be/WH4MUtBy7h0
https://youtu.be/WH4MUtBy7h0
https://youtu.be/WH4MUtBy7h0
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Denote the (approximate) Cholesky factor of A computed in floating-
point representation by L̂ ∈ Fn×n. In this section, we give backward error
analysis for replacing A in (1.75) by L̂L̂T . Let x̂ ∈ Rn satisfy:

L̂L̂T x̂ = b.

Our aim is to bound the relative error ‖x‖−12 ‖x− x̂‖2. First, we study the

entries of δA = A− L̂L̂T , by estimating the terms∣∣∣∣∣aij −
j∑

k=1

l̂ik l̂jk

∣∣∣∣∣ .
from above. Recall that there are different strategies for computing the
factor L̂. Here, we consider the left-looking strategy that computes the
off-diagonal entries ( i, j ∈ {1, . . . , }, i < j}) of the factor L̂ ∈ Fn×n as

l̂ij = fl

(
1

l̂jj

[
aij −

j−1∑
k=1

l̂ik l̂jk

])
. (1.76)

Diagonal terms are computed in a similar manner and they are not explicitly
treated in the following. The floating-point error related to evaluation of
the sum in (1.76) is estimated using Lemma 1.7. In the following, denote
by | · | : Rn×n 7→ Rn×n the entry-wise absolute value of a matrix, i.e.,

(|B|)ij = |bij |

for i, j ∈ {1, . . . , n} and B ∈ Rn×n.

Theorem 1.4. Let A ∈ Rn×n be s.p.d. and L̂ ∈ Fn×n be the Cholesky
factor of A computed in floating-point representation. In addition, let δA = See video on Theo-

rem 1.4 in YoutubeA− L̂L̂T . Then for i, j ∈ {1, . . . , n} there holds that

|δAij | ≤ γn(|L̂||L̂|T )ij where γn :=
(n+ 1)u

1− (n+ 2)u
.

Proof. We give the proof only for off-diagonal entries. Observe, that δA =
δAT , hence, we assume that i < j. Proof for diagonal entries follows using
similar arguments. Application of Lemma 1.7 to (1.76) gives

(1 + θj)l̂ij l̂jj = aij −
j−1∑
k=1

l̂ik l̂jk(1 + θk)

https://youtu.be/RXDzn4jo89w
https://youtu.be/RXDzn4jo89w
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for |θk| ≤ (k+1)u
1−(k+2)u , k = {1, . . . , j}. Rearranging the terms gives

j∑
k=1

l̂ik l̂jk(1 + θk) = aij ,

and further ∣∣∣∣∣aij −
j∑

k=1

l̂ik l̂jk

∣∣∣∣∣ ≤ γk
j∑

k=1

|l̂ik||l̂jk|.

where γn is the upper bound for the absolute value of coefficients |θk| for
k ∈ {1, . . . , n}.

Identical to Section 1.9.8, an upper-bound for the relative error follows
from the perturbation estimate in Theorem 1.3,

‖x‖−12 ‖x̂− x‖2 ≤
κ2(A)

1− ‖δA‖2‖A‖2 κ2(A)

‖δA‖2
‖A‖2

. (1.77)

Application of (1.77) requires estimate for the size of the relative pertur-
bation, ‖δA‖2‖A‖−12 . Before proceeding, we need the following technical
estimates:

P51. (1p) Let B,C ∈ Rn×n, and |B|, |C| ∈ Rn×n. Show that

‖B‖2 ≤ ‖|B|‖2 (1.78)

‖B‖2 ≤ ‖|C|‖2 if |B|ij ≤ |C|ij for i, j ∈ {1, . . . , n} (1.79)

‖BT ‖2 ≤ ‖B‖2. (1.80)

Also, recall Lemma 1.8 and the result proven in problem P32: Let B ∈ Rn×n
and F ∈ Rn×n satisfy B = FF T . Then

‖B‖2 = ‖F‖22.

Lemma 1.9. Make the same assumptions and use the same notation as inSee part 1 of this proof
in Youtube Theorem 1.4. In addition, assume that nγn < 1. Then there holds that

‖|L̂||L̂|T ‖2 ≤
n

1− nγn
‖A‖2 and

‖δA‖2
‖A‖2

≤ nγn
1− nγn

.

https://youtu.be/iUaCy_PmWog
https://youtu.be/iUaCy_PmWog
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Proof. We begin by estimating ‖|L̂||L̂T |‖2 from above. Using (1.80) gives

‖|L̂||L̂|T ‖2 ≤ ‖|L̂|‖22. (1.81)

We eliminate the entry-wise absolute value using the norm equivalence givenSee part 2 of this proof
in Youtube in Lemma 1.8 and the definition of the Frobenius-norm as

‖|L̂|‖2 ≤ ‖|L̂|‖F = ‖L̂‖F ≤
√
n‖L̂‖2. (1.82)

As A − δA = L̂L̂T , problem P32 states that ‖L̂‖22 = ‖A − δA‖2. Further,
using triangle inequality gives

‖L̂‖22 = ‖A− δA‖2 ≤ ‖A‖2 + ‖δA‖2 (1.83)

Combining (1.81), (1.82), (1.83) gives the estimate

‖|L̂||L̂|T ‖2 ≤ n‖A‖2 + n‖δA‖2 (1.84)

By (1.79) and Theorem 1.4,

‖δA‖2 ≤ γn
∥∥∥|L̂||L̂T |∥∥∥

2
. (1.85)

Combining (1.85) and (1.84), rearranging the terms, and dividing by (1 −
nγn) > 0 yields

‖|L̂||L̂|T ‖2 ≤
n

1− nγn
‖A‖2

Combining the above equation with (1.85) completes the proof.

1.9.11 Problems

P52. (2p) Let U ∈ Fn×n be an upper triangular matrix and b ∈ Fn. In
floating-point representation, the back-substitution method computes
an approximate solution x̂ ∈ Fn to the problem

Ux = b.

as

x̂i = fl

 1

uii

bi − n∑
j=i+1

uij x̂j

 . (1.86)

https://youtu.be/EZykN48yG_8
https://youtu.be/EZykN48yG_8
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(a) Let δU ∈ Rn×n have entries

(δU)ij = θijuij ,

where the scalars θij have an upper bound

|θij | ≤
(n− j + 2)u

1− (n− j + 3)u

for i, j ∈ {1, . . . , n}. Recall that u is the machine epsilon.

Use Lemma 1.7 to show that x̂ satisfies (U + δU)x̂ = b.

(b) Show that ‖δU‖2 ≤ (n+1)u
1−(n+2)u‖ |U | ‖2.

(c) Give estimate for the relative error

‖x− x̂‖2
‖x‖2

.

P53. (1p) Consider the matrix A defined in Problem 34, where

a21 =
[√
π + 1

√
π + 2 . . .

√
π + (n− 1)

]T
and a11 = ‖a21‖22 + 1.

(a) Compute by hand the value ‖a21‖2
(b) Construct the matrix A in Matlab using the exact value of ‖a21‖.

Remember to define A as a sparse matrix.

(c) Study the estimate of Theorem 1.4 by computing the Cholesky
factor L̂ ∈ Fn×n of A numerically for n = 10, 20, 40, 80, 160, 320.
Plot

max
ij

|aij − (LLT )ij |
(|L||LT |)ij

in logarithmic scale as a function of n. Compare to γn.

P54. (2p) Make same assumptions and use the same notation as in Prob-
lem P53

(a) Let n = 2k, k = 2, . . . , 15 and consider the linear system Ax = e1.
Use formula given in problem P34 to solve x using pen and paper.

(b) Plot the relative error between the exact solution x computed in
a) and the approximate solution obtained using Cholesky factori-
sation and back substitution in the ‖ · ‖2 - norm.
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1.10 Stable QR-decomposition

The QR-decomposition of a matrix A ∈ Rn×n,See introduction to sta-
ble QR-factorization in
Youtube A = QR where Q ∈ Rn×n is unitary and R ∈ Rn×n is upper triangular,

is an important ingredient in iterative solution methods, solution of least
squares problems, etc.

The simplest way to compute the QR decomposition is by the Gram–
Schmidt orthogonalization process. However, when the Gram–Schmidt or-
thogonalization process is implemented in floating-point representation, the
computed QR factorisation suffers from loss of orthogonality. This is, the
computed matrix Q can be far from an orthogonal matrix.

In this section, we discuss two process that are used to compute QR
factorisation of A using unitary elimination matrices {Ui}Ni=1 ⊂ Rn×n that
transform A into an upper triangular matrix R ∈ Rn×n as

UN · · ·U1A = R. (1.87)

As unitary matrices are invertible,

A = QR where Q = U1 · · ·UN . (1.88)

By direct computation, QTQ = I, hence Q is a unitary matrix and (1.88) is
the QR factorization of A.

Computing the product of unitary matrices in floating-point representa-
tion is very accurate, see Problem 47. Due to this, the loss of orthogonality
in Q is well under control (much better in comparison to the Gram–Schmidt
process).

This section is organised as follows. We begin by review of comput-
ing QR-factorisation by the Gram–Schmidt process. Then we discuss two
processes that generate unitary elimination matrices, Givens rotation and
Householder reflection. Both constructions are based on geometric argu-
ments.

1.10.1 Gram–Schmidt orthogonalization process

This section is review material and can be skipped

Gram–Schmidt orthogonalization process is based on the following Lemma.
In what follows, “orthogonality” refers to orthogonality in the sense of the
Euclidean inner product.

https://youtu.be/RhFXLKN5HEc
https://youtu.be/RhFXLKN5HEc
https://youtu.be/RhFXLKN5HEc
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Lemma 1.10. Let {q1, . . . ,qk} ⊂ Rm, k < m, be a set of orthonormal
vectors, i.e., ‖qi‖2 = 1, i = 1, . . . , k, and

qTi qj = 0 for i 6= j.

In addition, assume that a ∈ Rm does not belong to span(q1, . . . ,qk) and
define

qk+1 =
q̃k+1

‖q̃k+1‖2
, where q̃k+1 = a−

k∑
i=1

(aTqi)qi. (1.89)

Then {q1, . . . ,qk+1} ⊂ Rn is a set of orthonormal vectors and

span(q1, . . . ,qk+1) = span(q1, . . . ,qk,a). (1.90)

Proof. To begin with note that q̃k+1 defined in (1.89) is a nonzero vector
because a /∈ span(q1, . . . ,qk), i.e., a cannot be given as a linear combination
of q1, . . . ,qk.

To prove the orthonormality of the set {q1, . . . ,qk+1} it is enough to
prove that qk+1 is of unit Euclidean length and orthogonal to q1, . . . ,qk.
From the first equation in (1.89), it is obvious that ‖qk+1‖2 = 1. Moreover,
since qk+1 and q̃k+1 are parallel, it is actually enough to show that q̃k+1 is
orthogonal to q1, . . . ,qk: for any j = 1, . . . , k, we have

q̃Tk+1qj =
(
a−

k∑
i=1

(aTqi)qi

)T
qj = aTqj−

k∑
i=1

(aTqi)(q
T
i qj) = aTqj−aTqj = 0

due to the orthonormality of {q1, . . . ,qk}.
Although (1.90) follows straightforwardly from the definition of linear

span, let us anyway carefully prove it for the sake of completeness. Assume
first that x ∈ span(q1, . . . ,qk+1), i.e.,

x =
k+1∑
i=1

αiqi =
k∑
i=1

αiqi + αk+1qk+1

for some α ∈ Rk+1. Note that (1.89) can be rewritten in the form

qk+1 =
1

‖q̃k+1‖2

(
a−

k∑
i=1

(aTqi)qi

)
.
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Hence,

x =
k∑
i=1

αiqi+
αk+1

‖q̃k+1‖2

(
a−

k∑
i=1

(aTqi)qi

)
=

k∑
i=1

(
αi−

αk+1a
Tqi

‖q̃k+1‖2

)
qi+

αk+1

‖q̃k+1‖2
a,

which is obviously in span(q1, . . . ,qk,a), meaning that span(q1, . . . , ,qk+1) ⊂
span(q1, . . . ,qk,a).

On the other hand, if x ∈ span(q1, . . . ,qk,a), then for some α ∈ Rk+1,

x =
k∑
i=1

αiqi + αk+1a =
k∑
i=1

αiqi + αk+1

(
‖q̃k+1‖2 qk+1 +

k∑
i=1

(aTqi)qi

)
=

k∑
i=1

(αi + αk+1a
Tqi)qi + αk+1‖q̃k+1‖2 qk+1,

which clearly belongs to span(q1, . . . ,qk+1). Hence, also span(q1, . . . ,qk,a) ⊂
span(q1, . . . ,qk+1), which completes the proof.

The intuitive idea of (1.89) is that one first subtracts from a its projec-
tions onto the one-dimensional subspaces defined by q1, . . . ,qn, leaving only
the component of a orthogonal to span(q1, . . . ,qk), and then this compo-
nent is normalized. In fact, one can write the second equation of (1.89) in
the form

q̃k+1 = (I − Pk)a,

where Pk ∈ Rm×m is the orthogonal projection matrix onto the subspace
span(q1, . . . ,qk).

Using Lemma 1.10, it is straightforward to compute an orthonormal basis
for the subspace

R(A) = span(a1, . . . ,an) ⊂ Rm,

assuming the columns a1, . . . ,an of the matrix A ∈ Rm×n are linearly inde-
pendent, i.e., assuming N(A) = {0}. Indeed, such basis {q1, . . . ,qn} can be
recursively obtained via

qj =
q̃j
‖q̃j‖2

, where q̃j = aj −
j−1∑
i=1

(aTjqi)qi, for j = 1, . . . , n.

In other words, one first defines q1 by simply normalizing a1, then one com-
putes a unit vector q2 that is orthogonal to q1 and satisfies span(q1,q2) =
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span(q1,a2) = span(a1,a2), then one continues by computing a unit vector
q2 that is orthogonal to both q1 and q2 and satisfies

span(q1,q2,q3) = span(q1,q2,a3) = span(a1,a2,a3),

and so on until qn is computed and it holds that span(q1, . . . ,qn) = span(a1, . . . ,an) =
R(A).

Take note that one can get the original columns of A back via

aj = ‖q̃j‖2 qj +

j−1∑
i=1

(aTjqi)qi, j = 1, . . . , n, (1.91)

which demonstrates that, for any j = 1, . . . , n, the jth column aj of A
can be given as a linear combination of q1, . . . ,qj , i.e., of (only) the first j
orthonormal basis vectors of R(A) produced by the Gram–Schmidt process.
Defining in the standard manner Q = [q1, . . . ,qn] ∈ Rm×n and collecting
the coefficients in the linear combinations of (1.91) as columns of an upper
triangular matrix R ∈ Rn×n, the equations (1.91) can be written neatly in
a matrix form

A = QR.

To be more precise, R can be given elementwise as

Ri,j =


aTjqi if i < j,

‖q̃i‖2 if i = j,

0 if i > j.

Note also that QTQ = I ∈ Rn×n because the columns of Q are orthonor-
mal.There are two implementations of the Gram-Schmidt procedure. Mod-
ified:

function [Q,R] = my gsmith(A)

Q = [];
for i=1:size(A,2)

q = A(:,i);

for k=1:size(Q,2)
R(k,i) = q'*Q(:,k);
q = q - R(k,i)*Q(:,k);

end
R(i,i) = norm(q);
Q(:,i) = q/R(i,i);

end
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and the classical:

function [Q,R] = my c gsmith(A)

Q = [];
for i=1:size(A,2)

q = A(:,i);

for k=1:size(Q,2)
R(k,i) = q'*Q(:,k);

end

for k=1:size(Q,2)
q = q - R(k,i)*Q(:,k);

end
R(i,i) = norm(q);
Q(:,i) = q/R(i,i);

end

The two different implementations of the Gram-Schmidt process have very
different numerical stability properties. The quality of the factorization is
measured by computing error in orthogonality of Q,

‖I −QTQ‖

and error in the decomposition, ‖A − QR‖. Orthogonality of Q is more
sensitive to floating point errors than the error in the decomposition. For
the modified GS, one can prove numerical stability in both of these measures,
where as the classical GS is not numerically stable.

Example 1.17. Let A ∈ R4×3 be such that

A =

[
1T

εI

]
,

in which 1 =
[
1 1 . . . 1

]T
and ε > 0. Let us measure the orthogonality in

the maximum-norm ‖A‖max := maxij |Aij |. One obtains,

‖I −QTMGSQMGS‖max =
1√
2
ε and ‖I −QTCGSQCGS‖max =

1

2
.

And

‖A−QMGSRMGS‖max = 0 and ‖A−QCGSRCGS‖max = 0

Note, that these numbers were computed in floating point arithmetics.
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1.10.2 Givens rotation

In this section, compute QR-factorization using Givens rotation matrices.
In R2×2 rotation matrix has the entries[

sin θ − sin θ
sin θ cos θ

]
,

where θ is a given rotation angle. The Givens rotation matrix is constructed
from a 2×2 rotation matrix that turns a given vector a ∈ R2 to the directionSee video on 2 × 2-

Givens rotation matrices
in Youtube

of e1. Using angles in program code is cumbersome, hence they are avoided
in the following. We begin with an example.

Example 1.18. Let A ∈ R2×2 be such that

A =

[
a11 a12
a21 a22

]
=
[
a1 a2

]
. (1.92)

Next, we construct unitary matrix U ∈ R2×2 satisfying Ua1 = αe1 for some
α ∈ R. As U is unitary, ‖Ua1‖2 = ‖a1‖2 and α = ‖a1‖. Any 2× 2-unitary
matrix U satisfies

U =

[
uT1
uT2

]
where uTi uj = δij for i, j ∈ {1, 2}.

Using the condition UA = ‖a1‖e1 gives

uT1 a1 = ‖a1‖2, uT2 a1 = 0, and uTi uj = δij for i, j ∈ {1, 2}.

We choose u1 as the unit vector to the direction of a1 and u2 as a unit
vector orthogonal to a1. This is,

u1 = − a1

‖a1‖2
and u2 =

1

‖a1‖

[
−a21
a11

]
.

Computing the product UA gives

UA =

[
r11 r12
0 r22

]
i.e. A = UT

[
r11 r12
0 r22

]
.

which is the QR-decomposition of A.

Let of A ∈ Rn×n and i, j ∈ {1, . . . , n}, i < j. We proceed to construct

unitary matrix G such that (GA)ji = 0. Let â =
[
aii aji

]T
and U ∈ R2×2

a unitary matrix satisfying U â = ‖â‖2e1. Suitable matrix U is constructedSee video on Givens
rotation matrices in
Youtube

https://youtu.be/dti2LQCm75k
https://youtu.be/dti2LQCm75k
https://youtu.be/dti2LQCm75k
https://youtu.be/jIUVGrCbFzc
https://youtu.be/jIUVGrCbFzc
https://youtu.be/jIUVGrCbFzc
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in Example 1.18.
Consider the linear mapping f : Rn → Rn (see Problem P??) defined as

y = f(x),

[
yi
yj

]
= U

[
xi
xj

]
and yk = xk, for k 6= i, k 6= j.

This is, the matrix U operates on rows i and j of vector x, while all other
rows are left untouched. In Matlab, the linear mapping f is evaluated simply
as

function y = fmap(x,i,j,U)

y = x; % copy all entries to x
y([i;j]) = U*x([i;j]); % operate to rows i and j by U.

The matrix representation of mapping f is the unitary matrix

G :=



1
. . .

q11 q12
. . .

q21 q22
. . .

1


(1.93)

called as the Givens rotation matrix. Observe, that G depends on i,j, and
A. It is customary to leave these dependencies implicit. The product GA
can be computed as

GA =
[
f(a1) · · · f(an)

]
where A =

[
a1 · · · an

]
.

Hence, the multiplication GA only modifies rows i and j of A. In addition,
the entry (GA)ji satisfies

(GA)ji = eTj GAei = eTj f(ai).

Using the definition of f gives

(GA)ji =
[
0 1

]
U

[
aii
aji

]
= 0.

To collect, G is an unitary matrix that only modifies rows i, j and (GA)ji =
0. The QR-factorisation is computed using Givens rotation matrices as
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follows. Zeros are introduced one-by-one starting from the first column.
When first row has zeros at appropriate locations, the process continues to
the second row. The operation GA will preserve the zeros on the preceding
rows. Graphically, the QR factorisation is computed as follows


× × ×
0 × ×
× × ×
× × ×



× × ×
0 × ×
0 × ×
× × ×



× × ×
0 × ×
0 × ×
0 × ×




× × ×
0 × ×
0 0 ×
0 × ×



× × ×
0 × ×
0 0 ×
0 0 ×



× × ×
0 × ×
0 0 ×
0 0 0


The rows i and j are marked with red color. As U depends on i, j, A, it is
constructed separately in each step in above. The matrix G is not explicitly
computed. The corresponding Matlab code is

function [Q,A] = my givens qr(A)

Q = eye(max(size(A)));

for i=1:size(A,2)
for j=(i+1):size(A,1)

% Construct G
x = [A(i,i) ; A(j,i)];
xN = [-x(2) ; x(1)];

G = [ x'/norm(x) ; xN'/norm(xN)];

% Operate with G
Q([i j],:) = G*Q([i j],:);
A([i j],:) = G*A([i j],:);

end
end

Q = Q';
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P55. (2p) Let U ∈ R2×2 be such that UTU = I. Consider the mapping
f : Rn → Rn such that

y = f(x),

[
yi
yj

]
= U

[
xi
xj

]
and yk = xk, for k 6= i, k 6= j.

This is, the matrix U operates on rows i and j of vector x, while all
other rows are left untouched.

(a) Show that f is a linear mapping

(b) Show that for any x,y ∈ Rn

f(x)T f(y) = xTy. (1.94)

(c) As f is a linear mapping, there exists G ∈ Rn×n such thatf(x) =
Gx. Show that G is unitary, if f satisfies Eq. (1.94).

P56. (2p) Let A ∈ R2×2 be such that

A =

[
1 2
3 4

]
. (1.95)

(a) Construct a unitary matrix U ∈ R2×2 such that

UA =

[
r11 r12
0 r22

]
(b) Construct unitary matrix U2 ∈ R3×3 s.t.

U2

1 2 5
6 7 8
3 4 9

 =

× × ×
6 7 8
0 × ×

 .
1.10.3 Householder reflection

The QR factorisation using Householder reflections is computed identically
to using Givens rotations. The difference lies in the construction of the uni-
tary elimination matrix. Additional material, read it or skip it.

Fix x ∈ Rn. Householder reflection is the linear matrix

H = I − 2
uuT

uTu
,
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where u is chosen such that Hx = ‖x‖e1. This transformation is symmetric
and unitary for each u ∈ Rn, so that HT = H and HTH = I.

The Householder reflection is based on a geometric construction. Let
vector u = ‖x‖e1−x. The Householder reflection is a reflection with respect
to the hyperplane V orthogonal to u. Let P ∈ Rn×n be the orthogonal
projection to the sub-space span{u}, this is

P =
uuT

uTu
.

The orthogonal projection P introduces the splitting

x = (I − P )x + Px, (1.96)

in which (I − P )x ∈ V and Px ∈ V⊥ Thus, a reflection of x with respect to
the hyperplane V is simply

(I − P )x− Px = I − 2P. (1.97)

Geometrically, it is easy to see that

Px =
u

2
.

hence, the condition Hx = ‖x‖e1 is satisfied by the construction of H.
QR-decomposition is computed using Householder transformation as

function [Q,A] = my house qr(A)

Q = eye( size(A,1) );

if( size(A,1) > size(A,2))
N = size(A,2);

else
N = min(size(A)-1);

end

for i=1:N
% Construct H
x = A(i:end,i);
u = -x;
u(1,1) = norm(x)+u(1,1);

H = eye(length(x)) - 2*u*u'/(u'*u);

% Operate with H



1.10. STABLE QR-DECOMPOSITION 85

x

Hx

u

Figure 1.11: Householder transformation in 2D. The transformation is a
reflection of given vector x with respect to the dotted line to Hx.

A(i:end,:) = H*A(i:end,:);
Q(i:end,:) = H*Q(i:end,:);

end
Q = Q';

Graphically, we proceed as follows


× × ×
0 × ×
0 × ×
0 × ×



× × ×
0 × ×
0 0 ×
0 0 ×



× × ×
0 × ×
0 0 ×
0 0 0


There are two alternative ways to construct the Houselholder reflection,
transform the vector either to the direction of e1 or −e1. Reflection with
respect to the longest u is chosen to avoid division by zero and to guarantee
numerical stability. Note that thiks important feature is not included in the
example code given above.
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P57. (1p) Consider the matrix

A =


1 1
1 1
1 2
1 1


(a) Find a rotation matrix Q ∈ R2×2 and a permutation matrix P ∈

R4×4 such that (UA)31 = 0, in which

U = P T
[
Q 0
0 I

]
P.

Check that U is an unitary matrix.

(b) Find the Householder reflection matrix H ∈ R4×4 such that

H


1
1
1
1

 = 2e1.

Compute HA.



Chapter 2

Iterative solution methods

Let A ∈ Rn×n,b ∈ Rn, and consider the linear system

Ax = b. (2.1)

Computing the exact solution to (2.1) is often not necessary. This is the
case, for example, when the linear system is related to the (approximate) See introduction of

Chapter 2 (this is the
outline of Week 5) in
Youtube

solution of the two-dimensional Poisson’s equation −∆u = f using the fi-
nite difference method, see Section 1.3. In this case, the entries xi are the
approximate nodal values of the exact solution u. Even if (2.1) is solved
exactly, the obtained nodal values have discretization error due to the finite
difference approximation. Hence, it is sufficient to compute an approximate
solution x̂ with error x̂− x of the same order as the discretization error.

In this Chapter, we discuss iterative solution methods for finding an
approximate solution x̂ to (2.1). Iterative solution methods are processes
that generate a sequence of approximate solutions {xi} satisfying xi →
x. The process is stopped, when a sufficiently good approximation has
been constructed. The quality of approximation xi can be estimated by
computing the relative residual ‖Ax− b‖2‖b‖−12 .

This Chapter is organised as follows. We begin by discussing itera-
tive methods based on fixed-point techniques. Then we assume that A is
s.p.d. and show that solution of (2.1) is equivalent to solution of a quadratic
minimisation problem. We derive Conjugate Gradient (CG) as line search
iteration for solving this minimisation problem. Finally, we discuss iterative
methods based on subspace projection techniques.
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https://youtu.be/h1HmkxXGwV8
https://youtu.be/h1HmkxXGwV8
https://youtu.be/h1HmkxXGwV8
https://youtu.be/h1HmkxXGwV8
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2.1 Methods based on fixed-point iteration

Let f : R 7→ R, and consider the problem: find x ∈ R satisfying

x = f(x), (2.2)

We say that equation (2.2) is in fixed-point form and call x as fixed-point.See video on fixed-point
methods in Youtube Fixed-point iteration generates a sequence {xi} ⊂ R from a given initial

guess x0 ∈ R by
xi = f(xi−1) for i ∈ N.

The function f : R 7→ R satisfying

|f(x)− f(y)| ≤ L|x− y| for L < 1 and each x, y ∈ R.

is called as contraction. If f is a contraction, the Banach-fixed point theorem
guarantees that the sequence {xi} converges to fixed point x satisfying x =
f(x), i.e.,

x = lim
i→∞

xi.

The convergence rate, i.e., decay rate of |x− xi| depends on L.
Next, we apply fixed-point iteration to solution of (2.1). First, we write

the linear system in fixed-point form by decomposing A as

A = B + (A−B), (2.3)

where the matrix B ∈ Rn×n is chosen so that the linear system By = g
is computationally inexpensive to solve. In Gauss-Seidel method, B is the
lower triangular part of A, this is× × ×

× × ×
× × ×


A

=

× 0 0
× × 0
× × ×


B

+

0 × ×
0 0 ×
0 0 0


A−B

.

In the Jacobi-iteration B = diag(a11, a22, . . . , ann), this is,× × ×
× × ×
× × ×


A

=

× 0 0
0 × 0
0 0 ×


B

+

0 × ×
× 0 ×
× × 0


A−B

.

Here × indicates entries of matrix A. Next, assume that B is invertible.
Using the splitting in (2.3) to (2.1), and inverting B gives

x = B−1 (b− (A−B)x) . (2.4)

https://youtu.be/0-h_UlJL9S0
https://youtu.be/0-h_UlJL9S0
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The corresponding fixed-point iteration1

xi+1 = c + Cxi, (2.5)

where c := B−1b and C := −B−1(A− B) is called as the iteration matrix.
Convergence of xi to x is studied in the next Lemma.

Lemma 2.1. Let ‖·‖ be a vector norm, c ∈ Rn, and C ∈ Rn×n an invertible
matrix satisfying N(I−C) = {0}. In addition, let x0 ∈ Rn be a given initial
value, and consider the iteration

xi+1 = c + Cxi for i ∈ N.

Then the error ei := x− xi satisfies

ei = Cie0 and ‖ei‖ ≤ ‖C‖i‖e0‖

for any i ∈ N.

The above Lemma states that the fixed-point iteration in (2.5) converges to
x ∈ Rn satisfying Ax = b if the iteration matrix satisfies Ck → 0, when
k →∞.

Proof. See Problem P59

2.1.1 Problems

P58. (1p) Consider the vector norm,

‖x‖∞ := max
i
|xi|. (2.6)

(a) Show that the related matrix norm

‖A‖∞ = max
x∈Rn

‖Ax‖∞
‖x‖∞

(2.7)

can be computed as ‖A‖∞ := maxi
∑

j |aij |.
(b) Show that

‖x‖2 ≤
√
n‖x‖∞ and ‖x‖∞ ≤ ‖x‖2.

for any x ∈ Rn.

1In computations, one should not explicitly construct the iteration matrix C. Instead
we solve xi+1 from Bxi+1 = b + (A−B)xi
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P59. (2p) Make same assumptions and use same notation as in Lemma 2.1.

(a) Show that there exists a fixed point x ∈ Rn satisfying x = c +Cx.

(b) Let ei := x − xi. Show that ei = Cie0 and further ‖ei‖ ≤
‖C‖i‖e0‖.

(c) For which α ∈ R does the iteration (2.5) converge, when

C =
1

α

 0 −1 0
−1 0 −1
0 −1 0

 (2.8)

The initial guess can be any x0 ∈ R3.

P60. (1p) Let the matrix A ∈ Rn×n be strictly diagonally dominant, this is,

n∑
j=1,j 6=i

|aij | < |aii| ∀i = 1, . . . , n.

In addition, let

D =


a11

a22
. . .

ann

 and N = A−D.

Consider solving the linear system Ax = b using the fixed point itera-
tion

Dxi+1 = b−Nxi. (2.9)

Show that

(a)

(D−1N)ij =

{
aija

−1
ii i 6= j

0 i = j

(b)

‖D−1N‖∞ < 1

(c)

‖x− xk‖2 ≤
√
nρk‖x− x0‖2 (2.10)

where ρ = ‖D−1N‖∞. Hint: Use Problem P58
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P61. (0.5p) Consider the following approximations:

(a) ∫ 1

0
x2 dx ≈ 1

N + 1

N∑
i=0

(
i

N + 1

)2

.

(b)

1

1− r
≈

N∑
i=0

ri, r =
1

2
.

Plot the error in these approximations as a function of N using com-
mands plot, semilogy and loglog. Which graph is the most informative?
What can you say about the relation between error and N based on the
plots?

P62. (1p) Let α ∈ R and

N = 10;
A = alpha*eye(N) + diag(-ones(N-1,1),1)+ diag(-ones(N-1,1),-1)
b = zeros(N,1);b(end) = 1;

(a) For which values of α is A diagonally dominant?

(b) Approximately solve Ax = b using the Jacobi iteration. Plot
the error norm ‖ei‖2 as a function of i for different values of α.
Compare your results to (2.10)

2.2 Conjugate gradient method

Conjugate gradient (CG) method computes approximate solutions to the
linear system

Ax = b for b ∈ Rn and s.p.d. A ∈ Rn×n. (2.11)

CG is an iterative method that can be understood either as an iteration
for finding the minimizer of a quadratic functional related to (2.11) or as a
projection method approximately solving (2.11) in a subspace of Rn.

In this section, we derive CG as an energy minimisation method. The
alternative derivation as an projection method is discussed later. First,
we show that solving the linear system Ax = b is equivalent to solving a
quadratic minimisation problem. Then we discuss line search methods for
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solving the resulting problem and present the CG method. Throughout this
section, we make the following assumptions,

Assumption 2.1. Assume that A ∈ Rn×n is s.p.d., b ∈ Rn, and define
J : Rn 7→ R as

J(u) :=
1

2
uTAu− bTu.

We begin the discussion with the following Lemma.

Lemma 2.2. Under Assumptions 2.1, the problems

(P1) Find x ∈ Rn satisfying Ax = b.

and

(P2) Find y ∈ Rn satisfying J(y) < J(y + v) for any v ∈ Rn, v 6= 0.

are equivalent.

As problems (P1) and (P2) are equivalent, we can find the global minimizerSee video proof of
Lemma 2.3 in Youtube of J instead of solving the linear system. Observe that the following proof

does not rely on any previous results characterising minimum of J .

Part 1 of the proof, solution to (P1) is solution to (P2). Let x ∈ Rn satisfy
Ax = b. Our aim is to prove that J(x) < J(x + v) for all v ∈ Rn, v 6= 0.
Expanding J(x + v) gives

J(x + v) = J(x) +
1

2
vTAv + xTAv − bTv. (2.12)

The last two terms are written as xTAv− bTv = (Ax− b)Tv. By assump-
tion, Ax− b = 0. Hence, (2.12) becomes

J(x + v) = J(x) +
1

2
vTAv. (2.13)

The proof is completed by observing that A is s.p.d., this is, vTAv > 0 for
v 6= 0.

Part 2 of proof, solution to (P2) is solution to (P1). Let y ∈ Rn satisfy J(y) <
J(y + v) for all v ∈ Rn, v 6= 0. Our aim is to show that Ay = b. We argue
by contradiction, and assume that Ay 6= b. Expanding J(y + v) gives

J(y + v) = J(y) +
1

2
vTAv + yTAv − bTv.

https://youtu.be/0QG1Pgz-5j4
https://youtu.be/0QG1Pgz-5j4
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As y is the global minimizer of J ,

1

2
vTAv + yTAv − bTv > 0 (2.14)

for all v ∈ Rn, v 6= 0. We choose v = −t(Ay − b) and define p : R→ R as

p(t) :=
1

2
rTArt2 − ‖r‖22t where r = Ay − b.

By (2.14) and assumption r 6= 0, p(t) > 0 for every t 6= 0. As A is s.p.d. and
r 6= 0, p(t) is an upwards opening parabola with minimum at point tmin ∈ R
satisfying p′(tmin) = 0. Direct calculation gives

p(tmin) = −1

2

‖r‖42
rTAr

< 0 if ‖r‖2 6= 0,

which is a contradiction with (2.14). Hence, r = 0

Let x̂ ∈ Rn be an approximate solution to (P1). When working with
s.p.d. matrices, the error x− x̂ is measured in the A-weighted norm, ‖ · ‖A :
Rn 7→ R induced by the A-weighted inner product 〈·, ·〉A : Rn × Rn 7→ R,

〈v,w〉A := vTAw as ‖v‖A =
√
〈v,v〉A.

By direct computation, the solution x to (P1) satisfies

J(x) =
1

2
xTAx− bTx = −1

2
xTAx = −1

2
‖x‖2A.

By (P2), J(v) ≥ −1
2‖x‖

2
A for any v ∈ Rn. The following Lemma relates

error in ‖x− x̂‖A to the difference of J(x) and J(x̂).

Lemma 2.3. Under assumptions 2.1

‖x− x̂‖2A = 2 (J(x̂)− J(x)) .

for any x̂ ∈ Rn.

Proof. See Problem P64.
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2.2.1 Problems

P63. (2p) Let A ∈ Rn×n be s.p.d., x̂,b ∈ Rn, and x ∈ Rn satisfy Ax = b.
Show that

(a) ‖Ax‖2 ≤ ‖A‖1/22 ‖x‖A
(b) ‖x − x̂‖2A ≤ ‖x − x̂‖A‖L−1(Ax̂ − b)‖2 where L ∈ Rn×n is the

Cholesky factor of A.

(c)
‖x− x̂‖A
‖x‖A

≤
√
κ(A)

‖Ax̂− b‖2
‖b‖2

.

This Result relates the relative residual and error in the A norm.
The relative residual can be computed easily and is used to deter-
mine accuracy of solution in iterative methods. Hint: Have a look
at Problem 65.

P64. (1p) Prove Lemma 2.3.

2.2.2 Line search method

In this section, we briefly discuss line search methods and their application
to minimisation of J . Let f : Rn 7→ R be a given function. A line search
method generates a sequence {xi} ⊂ Rn from a given initial guess x0 ∈ Rn
and the set of search directions {pi} ⊂ Rn as follows:

Definition 2.1 (line search method). Let function f : Rn 7→ R, x0 ∈ Rn,See video on line search
methods in Youtube and {pi} ⊂ Rn. A line search method generates terms of the sequence

{xi} ⊂ Rn in two steps:

(i) Find αi ∈ R satisfying2

f(xi + αipi) < f(xi + (αi + t)pi) for all t ∈ R, t 6= 0. (2.15)

(ii) Set xi+1 = x + αipi.

When the function f behives sufficiently nicely, the sequence {xi} con-
verges to the global minimum x of f , i.e., x = limi→∞ xi. This is the case
if f is the energy functional J .

In general, αi in (2.15) is computed approximately, e.g., using the bisec-
tion search. If the line search method is used to find the global minimum

2We assume that f and pi are chosen such that αi satisfying (2.15) exists.

https://youtu.be/qUroHWZbmyo
https://youtu.be/qUroHWZbmyo
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of the energy functional J , αi is computed exactly. Define the function
p : R 7→ R as p(t) := J(xi + tpi), i.e.

p(t) =
1

2
pTi Apit

2 + (Axi − b)Tpit+
1

2
xTi Axi.

Observe that p(t) is second order polynomial with respect to t. As A is
s.p.d., the coefficient pTi Api > 0 and p(t) is an upwards opening parabola.
Hence, the parameter αi is obtained by solving p′(αi) = 0 as

αi =
pTi ri

pTi Api
, (2.16)

where ri = b−Axi is the residual on step i.

2.2.3 Gradient descend

Using the line search method requires a process generating the search di-
rections pi. In this section, we assume that function f is differentiable and
discuss gradient descend that is a line search method using search directions
pi = −(∇f)(xi). This is, pi points to the direction of greatest decay of
function f at point xi.

The gradient vector −∇f can by computed directly as

∇f =


∂f
∂x1
...
∂f
∂xn

 . (2.17)

However, often the easiest way to compute derivatives of vector or matrix
valued functions is to use the definition of directional derivative. Recall, that
gradient describes the change in the value of function f for an infinitesimal
change in it’s argument. By definition

(∇f)(x)Tv = lim
h→0

f(x + hv)− f(x)

h
(2.18)

Next, we apply gradient descend to find the minimum of J . Computing
the gradient using (2.17) or (2.18) (the latter one is much easier !) gives

(∇J)(y) = Ay − b. (2.19)

Hence, the gradient of J at xi is equivalent to the negative residual −ri =
Axi−b. If gradient descend is applied to minimisation of J , pi = −(∇J)(xi) =
ri and we obtain the iteration
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Definition 2.2 (Gradient descend for minimisation of J). Make Assump-
tions 2.1. In addition, let x0 ∈ Rn. Gradient descend method applied to
minimisation of J generates the terms of the sequence {xi} ⊂ Rn for i ∈ NSee video on gradient

descend in Youtube in three steps:

pi = b−Axi (2.20)

αi =
pTi ri

pTi Api
for ri := b−Axi (2.21)

xi+1 = xi + αipi (2.22)

Iteration given in Definition 2.2 satisfies the relations

ri+1 = ri − αiApi and ri+1 = r0 −
i∑

j=0

αjApj , (2.23)

Where the latter equation is obtained by repeating the first one.

Example 2.1. Let

A =

[
5 −3
−3 5

]
and =

[
2
2

]
.

Next, we apply gradient descend method given in Definition 2.2 to solve the
problem Ax = b by minimising the related energy J(y). The exact solution

x =
[
1 1

]T
. The iterates generated by gradient descend starting from the

initial guess x0 =
[
−1 −4

]T
are depicted in Figure 2.1 along with level sets

of J(y).

2.2.4 Problems

P65. (1p) Let A ∈ Rn×n be s.p.d. and L the Cholesky factor of A. Prove the
following identities

(a) ‖A−1‖2 = ‖L−1‖22 Hint: Proceed identical to Problem P32

(b) ‖Ax‖2 ≥ ‖A−1‖−1/22 ‖x‖A for any x ∈ Rn. Hint: start from ‖x‖A.

(c) ‖Ax‖A ≤ ‖A‖2‖x‖A for any x ∈ Rn.

P66. (2p) Consider the minimisation of J using the gradient descend method
given in Definition 2.2.

https://youtu.be/aL9XmMO8Stw
https://youtu.be/aL9XmMO8Stw
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−5 0 5
−5

0

5

Figure 2.1: Level sets of J(y) and the ten first iterates of the gradient
descend method for solving the problem in Example 2.1.

(a) Define the error ek := x− xk. Show that

eTi+1Api = 0, (2.24)

and further
‖ei+1‖2A = ‖ei‖2A − α2

ip
T
i Api.

(b) Recall that ri = Aei, pi = Aei, and show that

α2
ip

T
i Api ≥

1

(κ(A))2
‖ei‖2A

Hint: you need the results given in Problem 65. Start by expanding
αi and remember the definition of κA.

(c) Show that ‖ei‖2A ≤
(
1− κ(A)−2

)i ‖e0‖2A for i ∈ N.

P67. (2p) Let λ1 and λ2 be given. Generate random s.p.d. matrices in R2×2

with eigenvalues λ1 and λ2 using the following script.

L1 = 1; L2 = 5;
B = rand(2);
[Q,R] =qr(B);
A = Q'*[L1 0 ; 0 L2]*Q;

(a) Draw the level sets of energy functional J(y) for different matrices
A having condition numbers 1, 2, and 10. How does the condition
number change the function J ?
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(b) Validate the estimate given in Problem P66 using numerical ex-
amples. Use the gradient descend to find minimum of J(y). Plot
the error in A-weighted norm using semilogarithmic scale. For

reference, draw the predicted rate
(
1− κ−2(A)

)i/2
. Try several

different matrices A and vectors b.

2.2.5 A-orthogonal search directions

We call search the set of search directions {pi} as A-orthogonal, if

〈pi,pj〉A = 0, for i 6= j.

In this section, we prove the following Lemma.

Lemma 2.4. Make Assumptions 2.1 and consider the line search method
in Definition 2.1 for f = J . Assume that the search directions {pi} ⊂ Rn
are A-orthogonal, this is, pTi Apj = 0 for i 6= j. Then

(i) J(xi) < J(xi + v)

and

(ii) ‖x− xi‖A < ‖x− xi + v‖A

for any v ∈ span{pk}i−1k=0, v 6= 0. Here x ∈ Rn satisfies Ax = b.

Lemma 2.4 is important as it states that the approximate solution xi to
(2.11) computed using line search method is best in the A-norm from a the
set x0 + span{pk}i−1k=0. This result is later used to derive error estimate for
solution produced by CG. Before proving it we illustrate the result by an
example and give a technical result.

Example 2.2. Consider minimizing the functional J in the space x +
span{p0,p1}, i.e., computing the minimizer to F : R2 7→ R,

F (s, t) := J(x0 + sp0 + tp1). (2.25)

The function F is quadratic, so it’s minimum is attained at point (β1, β2) ∈
R2 satisfying 

∂F

∂s
(β1, β2) = 0

∂F

∂t
(β1, β2) = 0

(2.26)
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As F is quadratic (2.26) is equivalent to[
pT0Ap0 pT0Ap1

pT0Ap1 pT1Ap1

] [
β1
β2

]
=

[
pT0 b− p0Ax0

pT1 b− p1Ax0

]
(2.27)

If search directions p0 and p1 are A-orthogonal, pT0Ap1 = 0 and the linear
system in (2.27) reduces to a diagonal one:[

pT0Ap0 0
0 pT1Ap1

] [
β1
β2

]
=

[
pT0 b− p0Ax0

pT1 b− p1Ax0

]
(2.28)

Thus the minimizer is

x0 +
pT0 r0

pT0Ap0
p0 +

pT1 r0

pT1Ap1
p1 (2.29)

Next, we verify that the line search method using A-orthogonal search di-
rections p0 and p1 produces an identical solution. By Definition 2.1, r1 =
r0 + α0Ap0. Using A-orthogonality gives

pT1 r1 = pT1 r0.

Hence, (2.29) is

x0 +
pT0 r0

pT0Ap0
p0 +

pT1 r1

pT1Ap1
p1

which is x2 computed by the line search method.

We proceed by giving an orthogonality result.

Lemma 2.5. Make Assumptions 2.1 and consider the line search method
in Definition 2.1 for f = J . In addition, assume that the search directions See proof of Lemma 2.5

in Youtubeare A-orthogonal, this is, pTi Apj = 0 for i 6= j. Then

pTi rj = 0 for any i < j.

Proof. It follows from Definition 2.1 that

xi = x0 +
i−1∑
k=0

αkpk.

,

rj = ri −
j−1∑
k=i

αkApk.

https://youtu.be/sILNnqDzYS8
https://youtu.be/sILNnqDzYS8
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Taking inner product of the above equation with pi and usingA-orthogonality
gives

pTi rj = pTi ri − αipTi Api.

Using the relation αi =
pT
i ri

pT
i Api

completes the proof.

Proof of Lemma 2.4. By Lemma 2.3, ‖x− xi‖2A = 2 (J(xi)− J(x)). Hence,
the statements (i) and (ii) are equivalent. Next, we give a proof for theSee proof of Lemma 2.4

in Youtube statement (i). Denote ei := x− xi. Then

‖ei + v‖2A = ‖ei‖2A + 2 〈ei,v〉A + ‖v‖2A. (2.30)

Observe that Aei = ri. By assumption, v =
∑i−1

k=0 βkpk for some βk. Hence,

〈ei,v〉A =
i−1∑
k=0

βkr
T
i pk.

By Lemma 2.6, rTi pk = 0 for k ∈ {0, . . . , i− 1}. Thus, (2.30) becomes

‖ei + v‖2A = ‖ei‖2A + ‖v‖2A. (2.31)

Observing that ‖v‖2A > 0 for v 6= 0 completes the proof.

2.2.6 Conjugate gradient method

In this section, wedefine the Conjugate Gradient method by modifying the
See introduction on CG
in Youtube

gradient descend method given in Definition 2.2. Namely, CG uses the A-
orthogonal search directions pi that are computed form ri using the Gram-
Schmidt process as

pi =

ri i = 0

ri −
∑i−1

k=0
rTi Apk

pT
kApk

pk otherwise
(2.32)

We show that almost every term in the above sum has have value zero, and
the search direction pi can be computed from pi−1. Thus, the CG iteration
only stores vectors pi−1,pi, and xi. As most terms in the sum are zero,
finding a search direction pi is computationally inexpensive. Memory use,
small computational cost, and A-optimality property stated in Lemma 2.4
make CG a popular method for solving linear systems with s.p.d. coefficient
matrices.

https://youtu.be/Z_GZ-pIooqA
https://youtu.be/Z_GZ-pIooqA
https://youtu.be/dOAK4gjacS0
https://youtu.be/dOAK4gjacS0
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Let βi,k :=
rTi Apk

pT
kApk

for k ∈ {0, . . . , i− 1}. Equation (2.32) becomes

pi = ri −
i−1∑
k=0

βi,kpk. (2.33)

We proceed to show that βi,k = 0 for k ∈ {0, . . . , i− 2}, this is, rTi Apk = 0
for k ∈ {0, . . . , i− 2}.

Lemma 2.6. Make Assumptions 2.1. Consider the line search method give
in 2.1. Let f = J and define the search directions {pi} as in (2.32). Then
there holds that

See video proof of
Lemma 2.6 in Youtube(i) rTi rj = 0 for i, j ∈ {0, . . . , n}, i 6= j

and

(ii) rTi Apk = 0, for i ∈ N, k = {0, . . . , i− 2}.

Proof. We begin by proving identity (i). Without loss of generality, we can
assume that j > i. Taking inner product of (2.33) with rj gives

rTj pi = rTj ri −
i−1∑
k

βi,kr
T
j pk

Applying Lemma 2.5 proves (i). We f = J , using Defintion 2.1 gives

rk+1 − rk = −αkApk.

so that
rTi+1Apk = −α−1k

(
rTi+1rk+1 − rTi+1rk

)
By the orthogonality of residual vectors in (i),

rTi+1Apk =

{
0 k < i

−α−1i rTi+1ri+1 k = i

Which completes the proof.

The orthogonality of the residuals leads to the elimination of the de-
pendence on pi on all but the previous step. Hence, the equation (2.32)
simplifies to

pi = ri + α−1i−1
rTi ri

pTi−1Api−1
pi−1.

https://youtu.be/W4Hl_1Ecpiw
https://youtu.be/W4Hl_1Ecpiw


102 CHAPTER 2. ITERATIVE SOLUTION METHODS

This expression is further simplified to reduce the computational cost of the
algorithm. By the definition of αi−1,

α−1i−1
rTi ri

pTi−1Api−1
pi−1 =

rTi ri

rTi−1pi−1
pi−1.

By (2.32) and proof of Lemma 2.5,

rTi−1pi−1 = rTi−1ri−1,

which gives the CG method

αi =
pTi ri

pTi Api
(2.34)

xi+1 = xi + αipi (2.35)

ri+1 = ri − αiApi (2.36)

pi+1 = ri+1 +
rTi+1ri+1

rTi ri
pi (2.37)

In Matlab, a simple implementation of the above CG method looks like

% a simple implementation of cg.
%

function x = my cg(A,b,x0,N,tol)

x = x0;
r = b - A*x0;
p = r;

for i=1:N

alpha = (p'*r)/(p'*A*p);

x = x + alpha*p;

rold = r;

r = r - alpha*A*p;
p = r + r'*r/(rold'*rold)*p;

if(norm(r) < tol)
break;

end

end
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2.2.7 Problems

P68. (2p) Implement the CG as line search method given in Definition 2.1
with f = J . On each step generate the search directions using (2.33).
Store coefficients βi,k and validate numerically the orthogonality result
given in Lemma 2.6.

2.3 Orthogonal Projection Matrices

In this section, we discuss orthogonal projection matrices that are later
used to interpret conjugate gradient iteration as a subspace method. Before See video on orthogo-

nal projection matrices
in Youtube

proceeding, recall the one-to-one correspondence between positive definite
matrices and inner products.

Lemma 2.7. For any inner product 〈·, ·〉 : Rn × Rn → R, there exists a
s.p.d. matrix A ∈ Rn×n such that

〈x,y〉 = yTAx. (2.38)

for all x,y ∈ Rn. On the other hand, the formula (2.38) defines an inner
product for any symmetric positive definite A ∈ Rn×n.

Let 〈·, ·〉 : Rn × Rn → R be an inner product an A ∈ Rn×n the s.p.d.
matrix corresponding to 〈·, ·〉, i.e., < x,y >= yTAx. In addition, let V be a
subspace of Rn. The orthogonal complement of a subspace V in 〈·, ·〉 inner
product is defined as follows:

Definition 2.3. Let V be subspace of Rn and 〈·, ·〉 : Rn × Rn → R some
innerproduct. The orthogonal complement of V is the subspace

V⊥ := {w ∈ Rn | 〈w,v〉 = 0 for all v ∈ V}. (2.39)

Orthogonal projections are related to the splitting of a given vector x ∈
Rn as

x = v + v⊥, (2.40)

where v ∈ V and v⊥ ∈ V⊥. As the spaces V and V⊥ are orthogonal, the
splitting given in (2.40) is unique and well defined. The projection matrix
PV ∈ Rn×n is defined via

PVx = v

where v ∈ V is the first component in the RHS of (2.40). An immediate
consequence of this definition is that P 2

V = PV . In other words, the projec-
tion matrix PV is an identity map in R(PV). This is a fundamental property
that can be taken as the definition of a projection (matrix).

https://youtu.be/Z_t_vZZZC7A
https://youtu.be/Z_t_vZZZC7A
https://youtu.be/Z_t_vZZZC7A
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Definition 2.4. A matrix P ∈ Rn×n is a projection if it satisfies

P 2 = P. (2.41)

Next, we find explicit representation for PV . Let {v1, . . . ,vk} be a basis
for V. That is, the set of vectors is linearly independent and

V = span{v1, . . . ,vk}.

We stack the basis as columns of the matrix V ∈ Rn×k as:

V = [v1, . . . ,vk].

Note once again that V = R(V ) = span{v1, . . . ,vk}. By definition (2.39),
the columns of V are orthogonal to V⊥ in the inner product corresponding
to A ∈ Rn×n, meaning that

V TAv⊥ = 0 for any v⊥ ∈ V⊥. (2.42)

On the other hand, the splitting (2.40) is

x = V zV + v⊥ (2.43)

for some yet-to-be-defined zV ∈ Rk. Multiplying from the left by V TA and
using the orthogonality property (2.42), we get

V TAx = V TAV zV .

Because the columns of V ∈ Rn×k are linearly independent and A is positive
definite, N(V TAV ) = N(V ) is trivial, V TAV ∈ Rk×k is invertible, and zV
can be solved as

zV = (V TAV )−1V TAx.

Thus,
PV = V (V TAV )−1V TA ∈ Rn×n. (2.44)

Observe that computing the orthogonal projection does not require a basis
for V⊥. Orthogonal projections satisfy some useful identities. First of all,
since inversion and transposition commute, we have

P TV A = APV ,

and hence also,

P TV A(I − PV) = APV(I − PV) = A
(
PV − P 2

V
)

= A (PV − PV) = 0. (2.45)
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After transposition, this yields

(I − PV)TAPV = 0. (2.46)

We are interest in projection matrices because of the following best approx-See video on best ap-
proximation property of
orthogonal projection
matrices in Youtube

imation property.

Lemma 2.8. Let V be a subspace of Rn, < ·, · > an inner product, ‖ · ‖ :=

〈·, ·〉1/2, and PV ∈ Rn×n the 〈·, ·〉-orthogonal projection to V. Then

‖x− PVx‖ < ‖x− PVx + v‖ for any v ∈ V, v 6= 0.

Proof. By direct computation,

‖x−PVx+v‖2 = ‖(I−PV)x+v‖2 = ‖(I−PV)x‖2+2 〈(I − PV)x,v〉+‖v‖2.

Let the s.p.d. matrix A ∈ Rn×n correspond to the inner product 〈·, ·〉. As
v ∈ V, v = PVv, and

〈(I − PV)x,v〉 = xT (I − PV)TAv = xT (I − PV)TAPVv = 0

by (2.46). Hence, ‖x− PVx + v‖2 = ‖(I − PV)x‖2 + ‖v‖2.

2.3.1 Problems

P69. (0.5p) Show that V⊥ in Definition 2.42 is a subspace.

2.4 CG as a subspace methods

Next, we interpret the conjugate gradient iteration for solution of Ax = b
as a subspace method. We show that the iterate xi is the A-orthogonal
projection of the exact solution x to a Krylov subspace. Further, the iterate
xi can be computed without knowledge of the exact solution x. See video on interpet-

ing CG as a subspace
method in Youtube

Recall that CG iteration is a line search method for minimisation of the
quadratic functional J(u) = 1

2uTAu− uTb, see Definition 2.1. It generates
a sequence of solutions {xi} from initial guess x0. CG uses A-orthogonal
search directions {pi} that are constructed from the residuals ri = b −
Axi using the (slightly modified) Gram-Schmidt process. By (2.32) and
Lemma 2.6, the search directions generated by CG satisfy

pi = ri − βipi−1 for some βi ∈ R.

Make a standing assumption that the initial guess x0 = 0. (For treatment of
nonzero initial guess, see Problem P71). Under this assumption search di-
rections and iterates generated by CG are elements of the Krylov subspaces.

https://youtu.be/30rZS_rRdHs
https://youtu.be/30rZS_rRdHs
https://youtu.be/30rZS_rRdHs
https://youtu.be/30rZS_rRdHs
https://youtu.be/QPyn_ABLYKk
https://youtu.be/QPyn_ABLYKk
https://youtu.be/QPyn_ABLYKk
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P70. (2p) Let A ∈ Rn×n be s.p.d. and b ∈ Rn. In addition let {xi} and {pi}
be the iterates and search directions of conjugate gradient method with
initial guess x0 = 0. Define the family of Krylov subspaces {Ki(A,b)}
associated to A and b as

Ki(A,b) = span{b, Ab, A2b . . . , Ai−1b} for i ∈ {1, . . . , n}. (2.47)

Show that pi−1 and xi ∈ Ki(A,b) for i ∈ {1, . . . , n}. Hint: formulate
an induction proof.

Lemma 2.4 states that iterates {xi} generated by any line search method
using A-orthogonal search directions to minimise J satisfy

‖x− xi‖A < ‖x− xi + v‖A

for all v ∈ span{p0, . . . ,pi−1},v 6= 0, and i ∈ N. This is, each xi is
the best approximation of x from subspace spanned by search directions
{p0, . . . ,pi−1}. Further, by Problem 70, iterate xi computed using conju-
gate gradient method is the best approximation of x from the Krylov sub-
space Ki(A, b). The best approximation of x from Ki(A, b) is characterised
in Lemma 2.8 as

xi = PKi(A,b)x,

where PKi(A,b) ∈ Rn×n is the A-orthogonal projection to Ki(A, b). Let the
columns of matrix Vi ∈ Rn×i be a basis of the space Ki(A, b). By (2.44),

PKi(A,b) := Vi
(
V T
i AVi

)−1
V T
i A.

Using Ax = b yields

xi = Vi
(
V T
i AVi

)−1
V T
i b. (2.48)

Observe that (2.48) can be solved without knowledge on x in two steps:

Find qi ∈ Rn satisfying V T
i AViqi = V T

i b

Set xi = Viqi.
(2.49)

Rest of this section is organised as follows. We begin by giving a numeri-
cally stable method for computing a basis of Ki(A, b). Next, we use the best
approximation property to give error estimate for ‖x − xi‖A. We end this
section by discussing how convergence of CG is improved using precondi-
tioning.
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2.4.1 Problems

P71. (1p) Let A ∈ Rn×n be s.p.d. and x0,b ∈ Rn. Show that the following
processes yield the same solutions:

(1) Solve Ac = b − Ax0 using CG, starting from initial guess c0 = 0,
and read solution as xi = ci + x0.

(2) Solve Ax = b using CG starting from initial guess x0.

P72. (2p) Let S be a subspace of Rn, {q1, . . . ,qk} ⊂ Rn be a basis of S,
and Q =

[
q1 . . . qk

]
. In addition, let A ∈ Rn×n be s.p.d., b ∈ Rn,

and x ∈ Rn satisfy Ax = b. Consider the problem: find x̂ ∈ S that
minimises

‖x̂− x‖A. (2.50)

(a) Use Q and Cholesky factor of A to reduce (2.50) to a standard
least squares problem in 2-norm.

(b) Write down the solution of the standard least squares problem in
2-norm

(c) Show that the solution x̂ is equivalent to the A-orthogonal projec-
tion of x to the subspace S.

2.4.2 Krylov Subspace

The family of Krylov subspaces {Ki(A, b)} associated to A ∈ Rn×n and b is
defined as

Ki(A, b) = span{b, Ab, . . . , Ai−1b}.

Next, we give a method for constructing a basis for the space Ki(A, b). The See video on computing
a basis for the Krylov
subspace in Youtube

basis is used, e.g., to compute the best approximation of x from Ki(A, b).
Finding a basis for Ki(A, b) requires care. The trivial basis

{b, Ab, A2b, . . . , Ai−1b}

is not numerically stable and cannot be used. This is demonstrated in the
following example.

Example 2.3. Let

A = Q

10
1

10−1

QT .

https://youtu.be/Ik9-Z7TDnmw
https://youtu.be/Ik9-Z7TDnmw
https://youtu.be/Ik9-Z7TDnmw
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The vector A10b is then

A = Q

1010

1
10−10

QTb.

When Aib is computed by repeatedly multiplying b by A, information on the
lowest eigenvalue is lost due to rounding-off errors and the resulting vector
points to the direction of the eigenvector corresponding to largest eigenvalue.

Due to stability issues, basis for Ki(A, b) is computed using the Arnoldi
iteration that is based on the Gram-Schmidt process.

Definition 2.5 (Arnoldi iteration). Let A ∈ Rn×n and b ∈ Rn. Arnoldi
iteration computes basis {q1, . . . ,qi} for K(A, b) in three steps

Step 1 q̂i+1 =

{
b if i = 0

Aqi otherwise

Step 2 q̃i+1 = q̂i+1 −
i∑

k=1

q̂Ti+1qkqk

Step 3 qi+1 = ‖q̃i+1‖−12 q̃i+1.

Intuitively speaking, the numerical stability of Arnoldi iteration is due to
orthogonalisation step that eliminates directions q1, . . . ,qi−1 from qi. This
prevents Aqi from turning to the direction of the largest eigenvector of A
as happens in Example 2.3. An example implementation in Matlab is given
below.

function [Q,R] = my arnoldi(A,b,N)

Q = [];
q = b;
for i=1:N

for k=1:size(Q,2)
R(k,i) = q'*Q(:,k);
q = q - R(k,i)*Q(:,k);

end
R(i,i) = norm(q);
Q(:,i) = q/R(i,i);

q = A*Q(:,i);

end
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Basis computed by Arnoldi iteration has the following properties.

P73. (1p) Let A ∈ Rn×n, b ∈ Rn, and generate {qi} ⊂ Rn using the Arnoldi
Iteration in Definition 2.5. Show that

(i) Ki(A,b) = span{q1, . . . ,qi}. Hint: use induction.

(ii) qTi Ay = 0 ∀y ∈ Ki−2(A,b).

2.4.3 Problems

P74. (2p) Generate a random symmetric, positive definite 3×3 matrix using
the snippet:

[Q,R] = qr(rand(3)); A = Q*diag([10 0.5 0.1])*Q'.

(a) Without using Matlab, what are the eigenvalues and vectors of A?

(b) Compute Aib as z0 = b, zi = Azi−1, with b being a random vector
in R3. On each step, find αi1, αi2, αi3 s.t.

zi = αi1q1 + αi2q2 + αi3q3.

where qi are eigenvectors of A. Plot αij using semilogarithmic
plot. When does the method fail? Give a hypothesis for the reason
behind this failure?

2.4.4 Error estimate

Next, we estimate the error ‖x−xi‖A. Lemma 2.4 states that the iterate xi
computed by CG is the best possible approximation of x from the subspace
Ki(A, b). We begin by formulating this result in a different form. First, we
recall some properties of symmetric matrices.

Any symmetric real matrix A ∈ Rn×n is unitary diagonalisable, this is, See video on deriving er-
ror estimate for CG in
Youtube

A = QTΛQ, where Q ∈ Rn×n is a unitary matrix (i.e QTQ = I) and Λ ∈
Rn×n, Λ = diag(λ1, . . . , λn) is a diagonal matrix, and {λk} ⊂ R eigenvalues
of matrix A on the diagonal. Let p : R 7→ R be a degree n-polynomial, i.e.,

p(t) =

n∑
k=0

αkt
k

https://youtu.be/KW3FA7qZ01U
https://youtu.be/KW3FA7qZ01U
https://youtu.be/KW3FA7qZ01U
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where the coefficients αk ∈ R for k ∈ {0, . . . , n}. Recall that p(A) ∈ Rn×n
is defined as

p(A) =
n∑
k=0

αkA
k.

We make use the following result.

P75. (2p) LetA ∈ Rn×n be s.p.d., q(A) be any polynomial ofA, and {v1, . . . ,vn}
the orthonormal eigenbasis of A, i.e.

Avi = λivi and vTi vj = δij .

Show that

(a) ‖b‖2A =
∑n

i=1 λi(b
Tvi)

2 for any b ∈ Rn.

(b) ‖q(A)b‖2A =
∑n

i=1 λiq(λi)
2(bTvi)

2 for any b ∈ Rn.

Lemma 2.9. Let A ∈ Rn×n, b ∈ Rn, and x ∈ Rn satisfy Ax = b. In
addition, let {xi} be the iterates computed by CG and ei = x − xi for i ∈
{0, 1, . . . , }. Then there holds that

‖ei‖A ≤ min
q∈Pi
q(0)=1

max
k
|q(λk)|‖e0‖A.

where Pi is the space of degree i polynomials.

This estimate is important as it relates errors x − xi to approximation
properties of polynomials in the maximum norm.

Proof. As xi ∈ Ki(A, b) it can be written as p(A)b where p ∈ P i−1. Hence,

‖x− xi‖A = ‖e0 − p(A)b‖A.

Using relation b = Ax = Ae0 gives

‖x− xi‖A = ‖e0 − p(A)Ae0‖A = ‖(I − p(A)A)e0‖A.

Application of Lemma 2.4 gives

min
q∈Pi
q(0)=1

‖q(A)e0‖A = ‖(I − p(A)A)e0‖A

Hence, we obtain
‖ei‖A = min

q∈Pi
q(0)=1

‖q(A)e0‖A.
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Using identities given in Problem P75 yields

‖q(A)e0‖2A =
n∑
i=1

λiq(λi)
2(eT0 vi)

2,

Taking the maximum of q(λi)
2 as common factor and using Problem P75

gives

‖q(A)e0‖2A ≤ max
i
q(λi)

2
n∑
i=1

λi(e
T
0 vi)

2 = max
i
q(λi)

2‖e0‖2A.

The minimisation problem

min
q∈Pi
q(0)=1

max
t∈[λmin,λmax]

|q(t)|

can be solved analytically using Chebyshev polynomials. This leads to the
convergence estimate

min
q∈Pi
q(0)=1

max
k
|q(λk)| ≤

(√
κ2(A)− 1√
κ2(A) + 1

)i
,

where κ2(A) is the condition number of A in the 2-norm, i.e.,

κ2(A) = ‖A‖2‖A−1‖2 =
λmax
λmin

2.4.5 Problems

P76. (2p) Generate a random symmetric, positive definite n×n matrix using
the snippet:

n=20; [Q,R] = qr(rand(n)); A = Q*diag(linspace(1,L,n))*Q' .

(a) Determine the eigenvalues and eigenvectors of A.

(b) Let b ∈ R20 be a random vector. Compute a basis for the Krylov
subspace Ki(A, b) using function my arnoldi.m. Compute the
best solution xi in the A-norm to

Ax = b

from Ki(A, b)
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(c) Plot the error ‖x− xi‖A for L = 1, 10, 100, 1000 and i = 5, . . . , 15.
How does the error depend on L? How about i?

2.4.6 Preconditioning

If the condition number κ2(A) is large, computing a sufficiently accurate
approximation xi using CG can be too time consuming. For example, the
condition number of the finite difference matrix behaves as h−2.See video on precondi-

tioning in Youtube The convergence of iterative solution methods is improved by using a
preconditioner B ∈ Rn×n. The system Ax = b is transformed as

Right preconditioner ABy = b x = By

Left preconditioner BAx = Bb

Split preconditioner , B is s.p.d. B1/2AB1/2y = B1/2b x = B1/2y.

If N(B) = {0}, all three transformed systems in above are equivalent to
Ax = b. However, only the split preconditioned system is symmetric and
can be used with CG. When the split preconditioner is used together with
CG, operations only with B are required and it is not necessary to explicitely
construct B1/2. This important feature of CG.

The convergence properties of the CG iteration applied to the split-
preconditioned system are related to the eigenvalues of the matrix

B1/2AB1/2.

Due to the symmetry, the matrix B1/2AB1/2 is unitary diagonalizable. The
eigenvalues satisfy

B1/2AB1/2v = λv

now, make a change of variables to q = B1/2v and multiply with B1/2. This
gives

BAq = λq

In addition, the system is typically multiplied with A, so that one obtains

ABAq = λAq.

This is a generalized eigenvalue problem with same eigenvalues as the system
B1/2AB1/2. This form is especially suitable for convergence analysis of PCG.
The maximal and minimal eigenvalues can be computed via Rayleigh-Ritz
quotients as

https://youtu.be/Jeq0Tcmqb3w
https://youtu.be/Jeq0Tcmqb3w


2.4. CG AS A SUBSPACE METHODS 113

λmin = min
x∈RN

xTABAx

xTAx
and λmax = max

x∈RN

xTABAx

xTAx

A good preconditioned B approximates A−1 in the sense that λmin andλmax
are close to one.

THE END !
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