XPS

Topias Jussila

Table of content

XPS introduction

Instrumentation

What do we get out of the analysis

Binding energy

Chemical shift

Surface sensitivity

Other considerations

Case 1, 2 & 3

X-ray photoelectron spectroscopy (XPS)

- Also known as ESCA (Electron spectroscopy of chemical analysis)
- Widely used surface analysis method
 - Elemental composition
 - Chemical and electronic state of atoms
 - Oxidation state
 - Valence band structure
 - qualitative and quantitative analysis
- Basic principle
 - Sample surface is exposed to x-ray beam
 - Photoelectric effect
 - Electrons are emitted from the top 10 20 nm of the sample
 - Analysis based on kinetic energies of the emitted electrons

Instrumentation

- ultra-high vacuum chamber (10⁻⁹/10⁻¹⁰ mbar)
 - Prevent electron from scattering from air
 - Prevent surface contamination
- X-ray source (>1 keV)
 - Electron created by heating a filament (e.g., tungsten) and accelerated towards high voltage anode (e.g., aluminium)
 - Monochromator typically used \rightarrow only x-ray with certain wavelength (Al K_{α}) and narrower linewidth
- Extraction lenses
 - Define the angle range on electrons and area of the sample
 - Energy of electrons is often decreased as smaller energy results in higher energy resolution
- Electron energy analyzer
 - Concentric hemispherical analyzer
 - Detectors with electron multipliers

What do we get out of the analysis?

- Number of ejected electrons as function of their binding energy
 - Binding energies give qualitative information
 - Number on electrons (peak intensity) give quantitative information

Binding energy (BE)

- Attraction energy between the ejected electron and nucleus
- Photoelectric effect

 $E_{binding} = E_{photon} - (E_{kinetic} + \Phi)$

- Each electron configuration has specific binding energies
 - \rightarrow Elemental analysis
- Comparation of the results to tabulated data

Chemical shift

- Orbital energies (binding energies) depends also on the chemical environment
 - \rightarrow chemical/electronic state, empirical formula
- peaks shift according to the environment
 - Higher the oxidation state of a transition metal, higher the BE
 - Carbon attached to electronegative oxygen has higher BE than carbon attached to hydrogen

Surface sensitivity

- X-rays penetrate quite deep to the sample (few µm)
 - Ejected electron face several inelastic collisions \rightarrow loss on energy
- "C" electrons are ejected deep in the sample → energy loosed before reaching the surface
- "B" electrons created a bit closed to surface → some collisions → some energy loss
 - Background signal
- "A" electrons escape the material with no inelastic collision
 - Characteristic photoelectron peaks
- Higher x-ray energy source results in electrons detected deeper from the surface

Other considerations

- Auger electrons
 - Electron ejection from higher orbitals after relaxation
 - Does not depend on x-ray energy
 - Sometimes useful in qualitative analysis
- Satellite peaks
 - Due to multiple x-ray energies
- Shake-up peaks ("loss peaks")
 - Ejected core electron excites valence electron
- Plasmon lines
- Spin-orbit coupling

Pros and Cons

- Pros
 - Highly surface sensitive
 - Information about chemical states
 - Various material types can be analyzed
 - Organic, inorganic, composite, alloys, conducting, insulating, coatings...
- Cons
 - x-ray interaction with electrons
 - Hydrogen, helium cannot be seen
 - Only surface analysis
 - Sample must endure ultra-high vacuum
 - Surface charge creation of insulating sample
 - Charge neutralizers

Case 1: Iron-azobenzene MOF thin films

- ALD/MLD fabrication of sequential inorganic and organic layers
 - FeCl₃
 - azobenzenedicarboxylic acid
- Photoactive azobenzene
 - Cis-trans isomerism
 - Cis isomer by UV irradiation
 - Remote controlled of gas molecule capture
- Characteristic Fe $2_{p1/2}$ and Fe $2p_{3/2}$ peaks of trivalent iron
 - Characteristic satellite peak, too
- N:Fe ratio 2.6
 - \rightarrow azobenzene:Fe ratio 1.3
 - High CN and bridging type bonding
- Cl impurity

Khayyami, A., Philip, A., & Karppinen, M. (2019). doi: 10.1002/ange.201908164

Case 2: Organometallic thin films

- Organic based magnet by CVD
 - V(CO)₆ and MeTCEC precursors
 - V[MeTCEC]_x thin films
- Air sensitive → Ar sputtering before XPS measurement
- Composition: VC_{15.6}N_{4.3}O_{2.5}
 - Stoichiometry V[MeTCEC]_{1.5}
- V_{2p} peak split (spin-orbit coupling)
 - Both peaks have two different binding energies
 - V²⁺ and V⁵⁺ (due to oxidation)
- N_{1s} peak with characteristic shakeup peak

Case 3: Catalyst degradation

- degradation of a fuel cell catalyst studied by XPS
 - Dispersed Pt nanoparticles supported by carbon particles
 - Pt as the active catalyst material
- Oxidized and metallic Pt
 - Total amount of Pt decreased from 0.4% to 0.3%
 - Portion of metallic Pt decreased and oxidized Pt increased → catalyst degradation
- Surface chemistry of catalysts extremely important → XPS suitable characterization method

X-Ray Photoelectron Spectroscopy | Thermo Fisher Scientific – Fl

X-ray Photoelectron Spectroscopy (XPS) - Chemistry LibreTexts

X-ray photoelectron spectroscopy – Wikipedia

Stevie, F., & Donley, C. (2020). Introduction to x-ray photoelectron spectroscopy. *Journal Of Vacuum Science* & *Technology A*, *38*(6), 063204. doi: 10.1116/6.0000412

Khayyami, A., Philip, A., & Karppinen, M. (2019). Atomic/Molecular Layer Deposited Iron–Azobenzene Framework Thin Films for Stimuli-Induced Gas Molecule Capture/Release. *Angewandte Chemie*, *131*(38), 13534-13538. doi: 10.1002/ange.201908164

Lu, Y., Harberts, M., Kao, C., Yu, H., Johnston-Halperin, E., & Epstein, A. (2014). Thin-Film Deposition of an Organic Magnet Based on Vanadium Methyl Tricyanoethylenecarboxylate. Advanced Materials, 26(45), 7632-7636. doi: 10.1002/adma.201403834

Zhang, F., Advani, S., Prasad, A., Boggs, M., Sullivan, S., & Beebe, T. (2009). Quantitative characterization of catalyst layer degradation in PEM fuel cells by X-ray photoelectron spectroscopy. *Electrochimica Acta*, *54*(16), 4025-4030. doi: 10.1016/j.electacta.2009.02.028