

7 Environmental noise ELEC-E5640 - Noise Control D

Valtteri Hongisto

valtteri.hongisto@turkuamk.fi 040 5851 888 Adjunct professor in Noise Control in Aalto University Research group leader in Turku University of Applied Sciences

Espoo, Finland, 8th Nov 2021

1

Prediction of sound propagation outdoors

Source type

- Point source
- Cylindrical source (line)
- Surface source

Source operation vs. time

• Hour-based operation or traffic amount

Source emission

- Point sources: SWL
- Point sources: SPL at 10 m

In addition:

- Athmospheric absorption (T, RH)
- Ground absorption
- Topography
- Obstacles between source and receiver (buildings, noise barriers)
- Vegetation zones
- Reflection coefficients of barriers and buildings

Neglegted factors:

- Wind gradient
- Turbulence
- Temperature gradient

Selection of xyz positions:

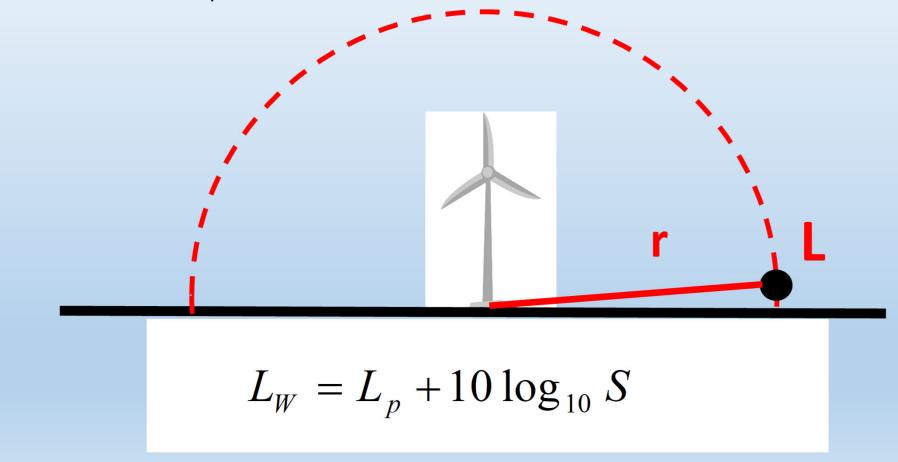
- Sound source(s)
- Receiver(s) or receiver grid (sound maps)

Selection of prediction method:

- Standardized method, i.e. ISO 9613
- Nordic prediction model
- National practices
- Independent methods

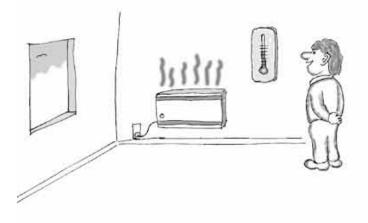
Nearly all regulations are given for L_{Aeq} , therefore, the calculations are done accordingly.

Sound power level, SWL

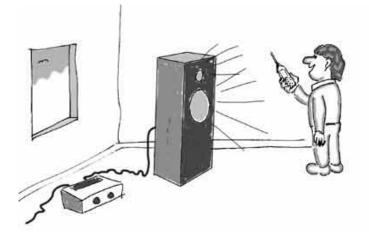

- SWL, $L_{\rm W}$, is determined by:
- SWL of a finite source is measured by:
 - *S* [m²] is the area of measurement surface enveloping the source (excluding the ground where it is mounted)
 - $L_{\rm I}$ [dB] is the sound intensity level perpendicular to the surface
- In free field, $L_p = L_I$ and L_p measurements are used for simplicity.
 - Free field takes place outdoors or in an anechoic chamber

$$L_W = 10 \lg \frac{\tilde{W}}{W_0} \quad [dB] \qquad W_0 = 1 \text{ pW}$$

$$L_W = L_I + 10\log_{10} S$$


$$L_I = 101 \mathrm{g} \frac{\widetilde{I}}{I_0} \, \mathrm{[dB]}$$

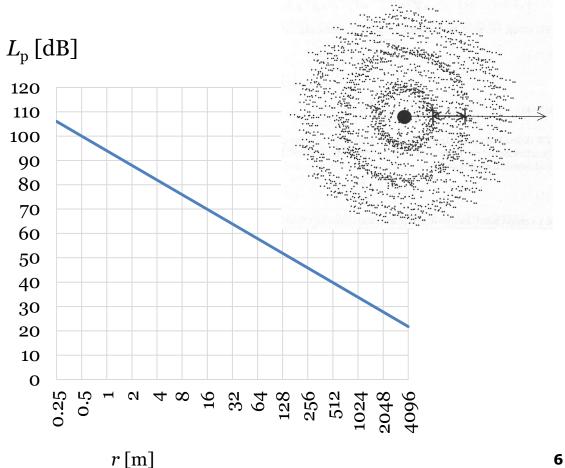
The SWL of e.g. a wind turbine is measured at a distance of approximately r=200 m. SPL is 50 dB. What is sound power level?



Analogy between temperature and sound pressure

- Room temperature [°C] caused by a radiator in the room depends on
 - the electric power (in Watts) of the radiator
 - the losses of the room (room size, thermal absorption/isolation)
 - the distance to the radiator
 - the location with respect to the thermal flow (directivity) of the radiator

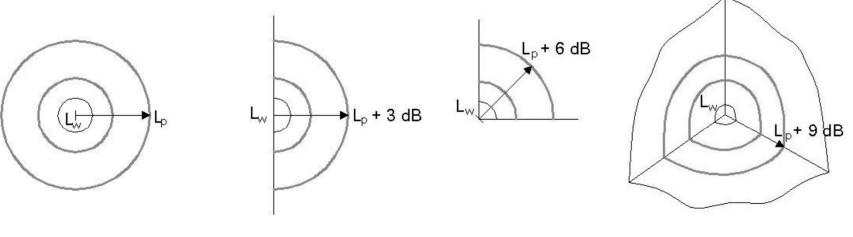
- **Sound pressure [Pa]** caused by a source in the room depends on
 - the sound power (in Watts) of the source
 - the losses of the room (room size, room absorption area, isolation of the room)
 - the distance to the source
 - the location with respect to the directivity pattern


Geometric spatial attenuation

Independent variables:

- Geometric attenuation term, D_{ge} [dB]
- Sound power level $L_{\rm W}$ [dB] •
- directivity constant *k* in the direction of interest
- space angle \varOmega ٠
- distance to the source r [m] ٠

$$L_p = L_W + D_{ge} = L_W + 10\log_{10}\left[\frac{k}{\Omega r^2}\right]$$


• Figures indicates the SPL produced by a point source with k=1 and $\Omega=4\pi$. The outcome is a spherical symmetric wave.

Space angle Ω

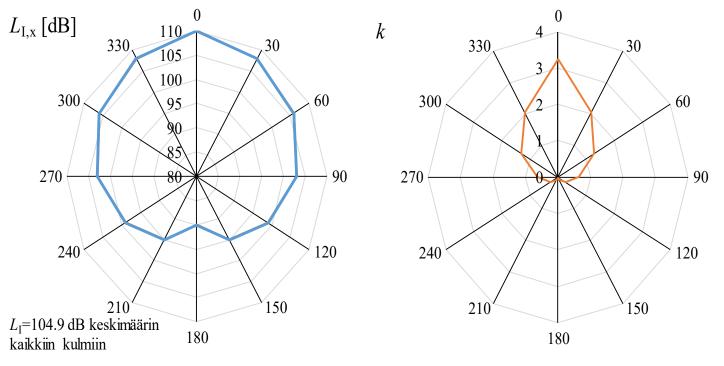
Suppressed space angle increases the SPL even by 11 dB.

- 4π Source is far from surfaces, e.g. wind turbine
- 2π Source is near to one surface, e.g. source on the ground
- π Source is near to two surfaces, e.g. washing machine
- $\pi/2$ Source is near to three surfaces, e.g. freezer

 $\Omega = \pi/2$

Directivity constant *k*

- Constant k in the angle θ depends on
 - sound intensity in angle θ , I_{θ}
 - mean sound intensity in all angles, I_m

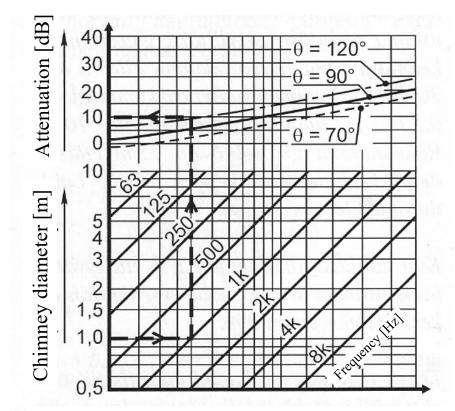

$$k_{\theta} = \frac{I_{\theta}}{I_m}$$

• Directivity index $L_{k,\theta}$ [dB]

$$L_{k,\theta} = 10\log_{10}k_{\theta}$$

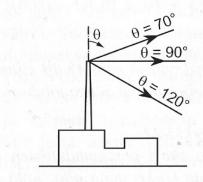
• The propagation equation gets the form:

$$L_p = L_W + L_{k,\theta} + 10\log_{10}\left[\frac{1}{\Omega r^2}\right]$$



At 0°:
$$k_{\theta}$$
=3.25 and L_{k} =5.1 dB.

7.2 When are the SWL and the SPL of a point source equal in free field? Check separately the four space angles.

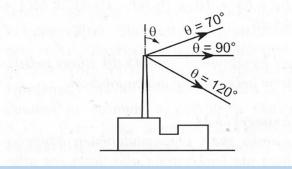

$$L_p = L_W + D_{ge} = L_W + 10\log_{10}\left[\frac{k}{\Omega r^2}\right]$$

Directivity index of a chimney L_k [dB]

Directivity of sound from a tall chimney. The example with arrows concerns a chimney with a 1.0 m diameter, 1000 Hz and angle θ =120 °, where the attenuation is 10 dB $L_{\rm k}$ [dB] for angles 90° and 120° with various chimney diameters *d*.

			Frequ	ency [H71		
d, mm	63		250			2k	4k
	For	Θ=9() degi	ees			
100	0	0	0	0	0	0	-1
200	0	0	0	0	0	-1	-4
400	0	0	0	0	-1	-4	-7
800	0	. 0	0	-1	-4	-7	-10
1600	0	0	-1	-4	-7	-10	-13
	For	Θ=12	20 deg	grees			
100	-3	-3	-3	-3	-3	-4	-5
200	-3	-3	-3	-3	-4	-5	-8
400	-3	-3	-3	-4	-5	-8	-11
800	-3	-3	-4	-5	-8	-11	-14
1600	-3	-4	-5	-8	-11	>14	-17

Halme&Seppänen, 2002

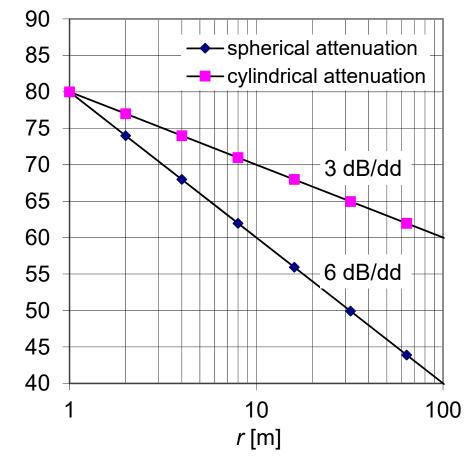

10

Chimney is 20 meters high. The diameter is d=1600 mm. SWL is 115 dB at 63 Hz octave band. What is the SPL at a yard locating 35 m away?

$$L_{p} = L_{W} + D + L_{k} = L_{W} + 10\log_{10}\left[\frac{1}{\Omega r^{2}}\right] + L_{k}$$

Taulukko 5:13 Suuntaindeksin arvoja 90 ja 120 asteen suuntakulmille oktaavikastoittain.

		22	Taa	juus,	Hz.		÷
d, mm	63	125	250	500	1k	2k	4k
	9	0 ast	een k	ulmal	lle		
100	0	0	0	0	0	0	-1
200	0	0	0	0	0	-1	-4
400	0	0	0	0	-1	-4	-7
800	0	. 0	0	-1	-4	-7	-10
1600	0	0	-1	-4	-7	-10	-13
	12	20 ast	teen k	culma	lle		
100	-3	-3	-3	-3	-3	-4	-5
200	-3	-3	-3	-3	-4	-5	-8
400	-3	-3	-3	-4	-5	-8	-11
800	-3	-3	-4	-5	-8	-11	-14
1600	-3	-4	-5	-8	-11	-14	-17


Geometric spatial attenuation D line source, free field

- Cylinder source
- E.g. a road with constant traffic.
- Usually, line sources are expected to have a symmetric radiation, *k*=1
- SWL of a line source is not specifically defined because the line length depends on application. L_{p,1} is expressed at a distance r₁ and L_{p,2} at another distance r₂ is determined by

$$L_{p,2} = L_{p,1} - 10 \cdot \log_{10} \left(\frac{r_2}{r_1} \right)$$

• Comparison of point and line sources when they have equal SPL at 1 m distance.

SPL [dB]

Spatial attenuation from point source Ground and athmospheric attenuation included

- Sound power level $L_{\rm W}$ [dB]
- Directivity constant, *k*=1
- Space angle Ω
- Distance *r* [*m*]
- Ground correction $D_{\rm gr}$ [dB]
- Athmospheric attenuation D_{atm} [dB/km]

$$L_p = L_W + 10\log_{10}\left(\frac{k}{\Omega r^2}\right) + D_{gr} - D_{atm}$$

Athmospheric attenuation D_{atm}

- Water molecules absorb sound differently in different temperatures *T* and relative humidities *RH*
- Attenuation at distance r [m] is notated by D_{atm}
- D_{atm} is large at large distances and high frequencies
- "Low frequencies can be heard farther away"

Т	RH				lpha [d	B/km]			
[°C]	[%]	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
10	70	0.1	0.4	1	1.9	3.7	9.7	32.8	117
20	70	0.1	0.3	1.1	2.8	5	9	22.9	76.6
30	70	0.1	0.3	1	3.1	7.4	12.7	23.1	59.3
15	20	0.3	0.6	1.2	2.7	8.2	28.2	88.8	202
15	50	0.1	0.5	1.2	2.2	4.2	10.8	36.2	129
15	80	0.1	0.3	1.1	2.4	4.1	8.3	23.7	82.8

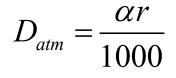


Table 2 of ISO 9613-2:1996

Ground correction D_{gr}

- Ground absorption coefficient α_G :
 - 0.0: hard (asphalt, water)
 - 0.3: mainly hard (sand fields, dense urban areas)
 - 0.7: mainly soft pehmeä (non-dense urban areas)
 - 1.0: soft (natural ground)
- If the ground is hard in the receiver's location, the level increases by 3 dB
 - The correction is valid if the height of the receiver is larger than the wavelength.
- Low-frequency noise deserves a specific attention: if the measurement height is less than λ/4 from the ground, the sound pressure maximum of the standing wave produces an increment of 6 dB in SPL (same phase of incident and reflected wave).

GENERAL RULES

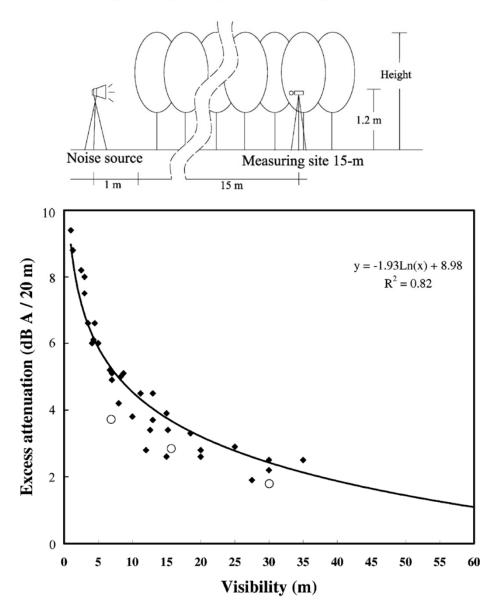
- Hard ground: +3 dB
 - Water
 - Ice
 - Asphalt
- Soft ground: 0 dB
 - Snow
 - Forest

D_{gr} for wind turbine noise modeling

	<i>f</i> [Hz]	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400
Soft ground	$D_{ m gr} [m dB]$	5.6	5.4	5.2	5	4.7	4.3	3.7	3	1.8	0	0	0	0	0
Hard ground	$D_{ m gr} [m dB]$	6	6	5.9	5.9	5.8	5.7	5.5	5.2	4.7	4	3	3	3	3
	<i>f</i> [Hz]	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Soft ground			630 0	800 0	1000	1250 0	1600	2000 0	2500 0	3150 0	4000 0	5000 0	6300 0	8000 0	10000 0
Soft ground Hard ground	$D_{\rm gr}$ [dB]	0		0		0	_		0	-					

Ympäristöhallinnon ohje, 2/2014

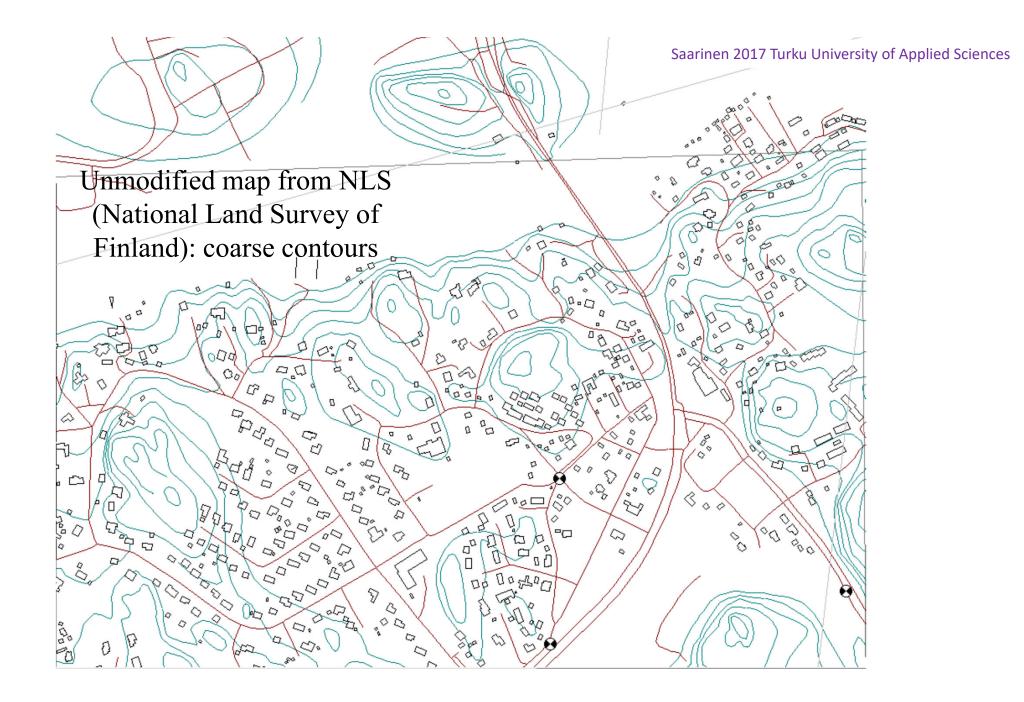
http://www.ym.fi/fi-Fl/Ajankohtaista/Julkaisut/OH_22014_Tuulivoimaloiden_melun_mallinta(28436)

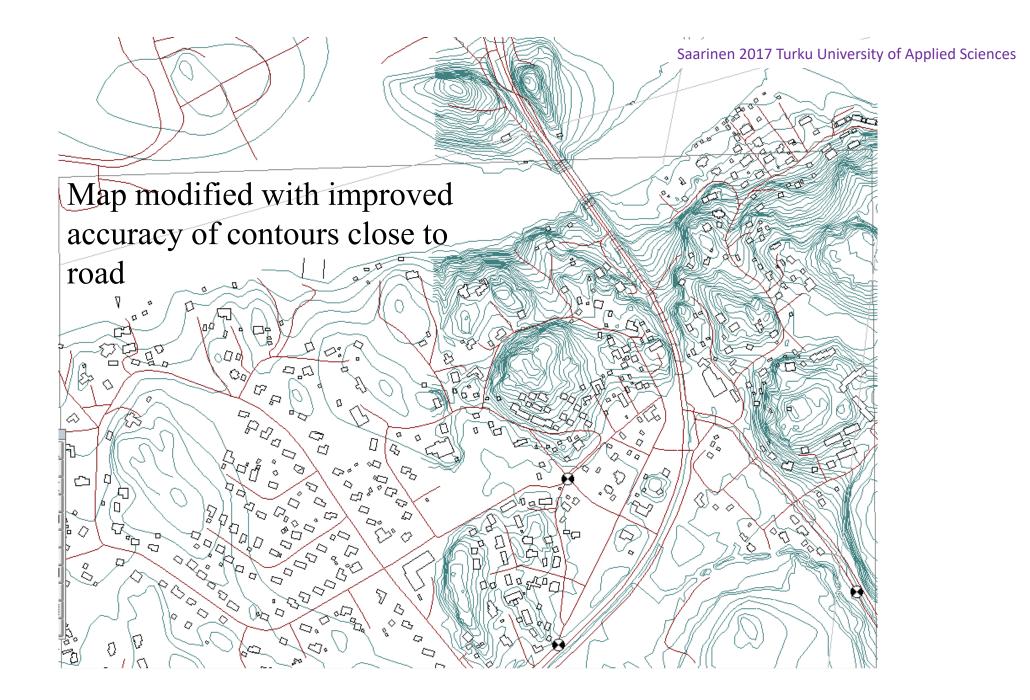

C.-F. Fang, D.-L. Ling/Landscape and Urban Planning 63 (2003) 187-195

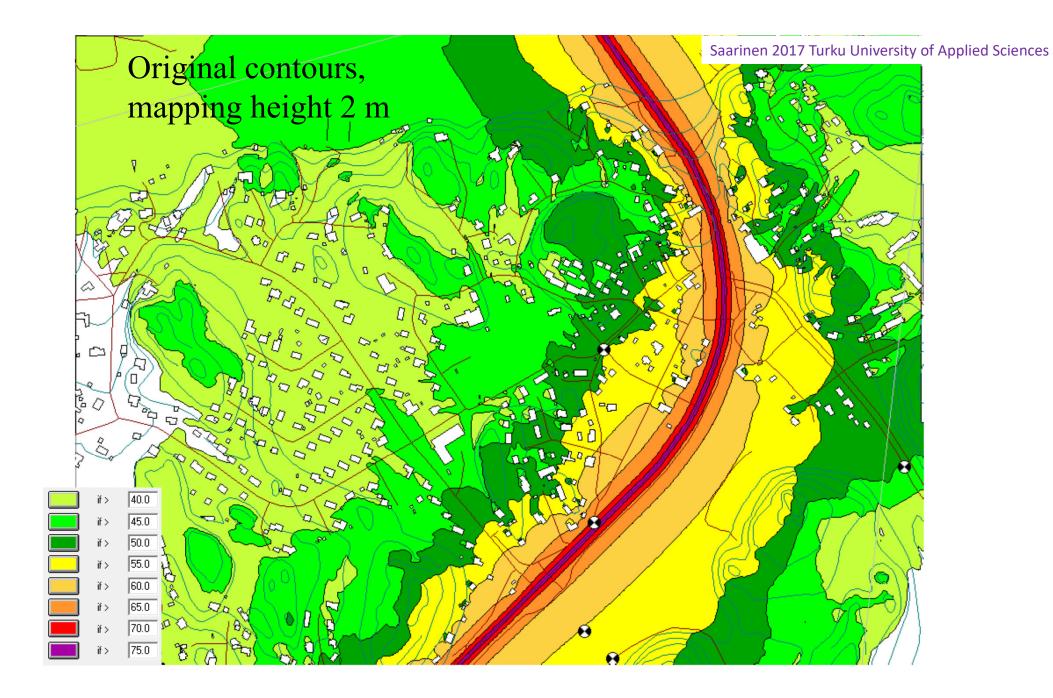
Vegetation attenuation D_{veg}

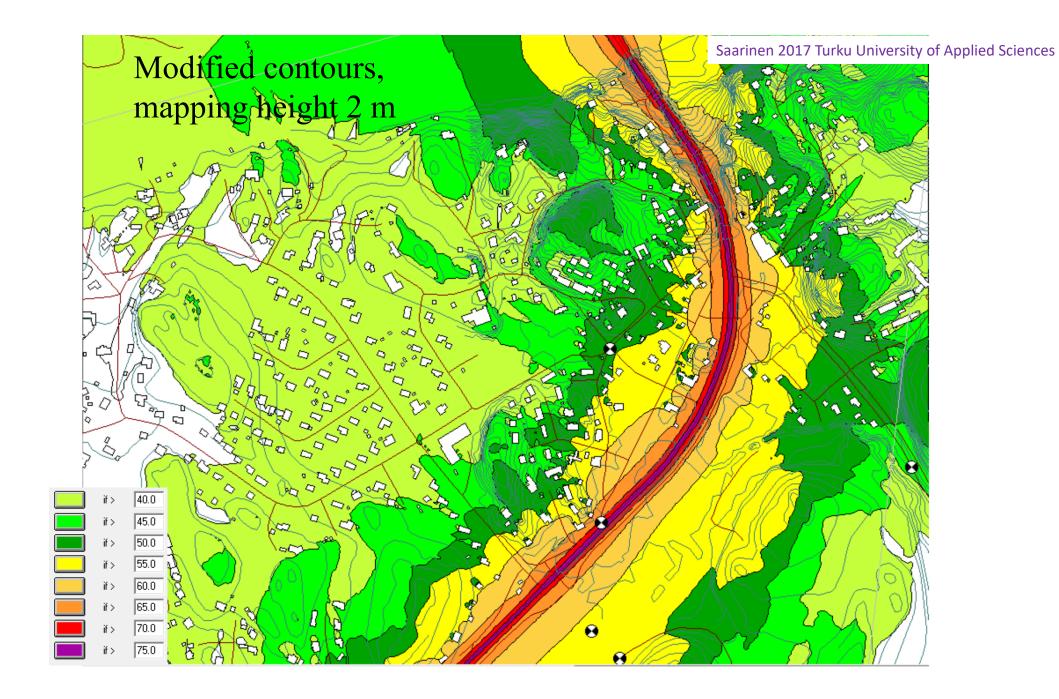
• Fang and Ling (2003) found that the attenuation D_{veg} [dB/20 m] through a vegetative zone is strongly associated with the visibility V_{veg} [m] through the vegetation.

$$D_{veg} = -1.9\ln\left(V_{veg}\right) + 9$$


• A part of sound bends over the vegetation zones so that there is an upper limit that a vegetative zone can reduce noise in practice.




17


Topography

- Important for sound sources located close to ground
- Topography is downloaded from map service
- Maps give height contours with 5 m density
- Near the sound source, the accuracy may need to be improved by hand

Noise barriers

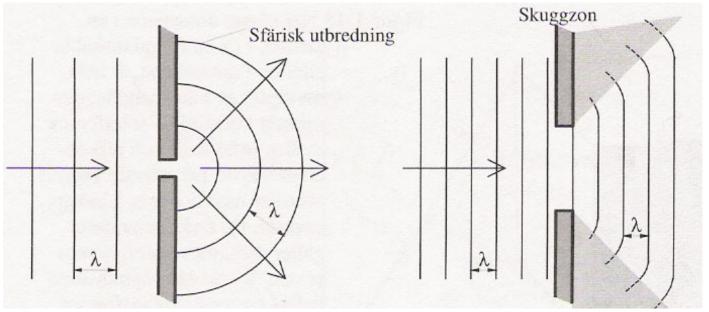
hansarakenne.fi

kuhmonbetoni.fi

a1highways.com.au/noise-barriers

sepa.fi

boscoitalia.it


Diffraction in a hole

Strong and perfect diffraction: hole $<< \lambda$:

- Phase is constant within the hole
- The hole acts as a perfect new point source
- Energy is equally transmitted in all directions behind the hole

Weak diffraction: hole >> λ

- Phase is not constant within the hole
- Middle part of sound wave transmits the hole without any disturbance
- Only the sound waves closer than $\lambda/2$ to the edge "perceive" full diffraction

Weak diffraction: hole >> λ

• Barrier can be considered as a one-sided infinite hole

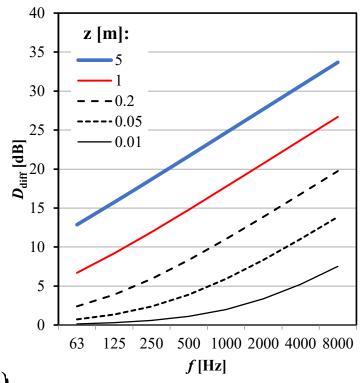
Insertion loss of a barrier in free field for a point source

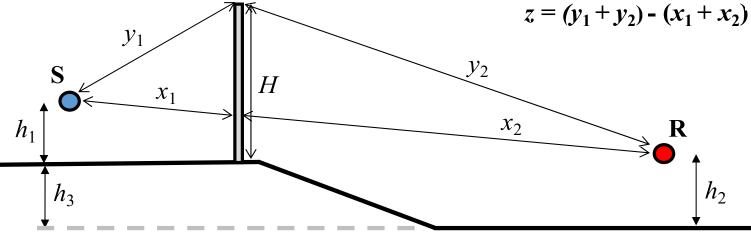
- *Insertion loss*: reduction of SPL in a specific point as consequence of a noise barrier, D_{nb,tot}
- Factors affecting insertion loss are diffraction (bending) over the barrier, D_{nb} and transmitted sound through the barrier (airborne sound reduction index, R)
- If $R = \infty$, barrier's insertion loss D_{diff} [dB] due to diffraction for a point source in free field follows Maekawa's law:
 - L_{p1} without barrier

 - L_{p2}^{P1} with barrier
 z is the distance difference [m]

$$D_{nb,tot} = L_{p,1} - L_{p,2}$$

$$D_{nb,tot} = -10 \cdot \log_{10} \left(10^{-R/10} + 10^{-D_{diff}/10} \right)$$

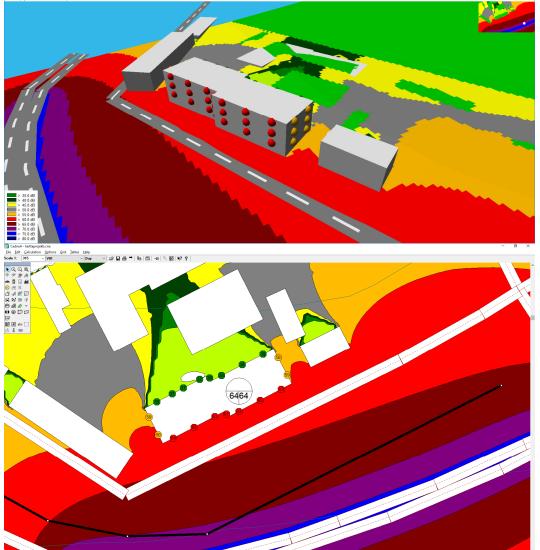

Maekawa's Law


$$D_{diff} = 10 \log_{10} \left(1 + 20 \frac{z}{\lambda} \right)$$

Distance difference *z*

- z increases by setting source and receiver close to the barrier
- Maximum value of z is 2H.

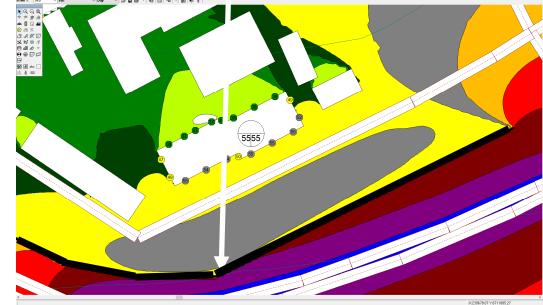
$$D_{diff} = 10 \log_{10} \left(1 + 20 \frac{z}{\lambda} \right)$$





Without barrier 📧 CadnaA 3D (0

File Display Camera and Scene



With barrier

Help V Day

X239613.87 Y 6711922.0

30

> 35.0 dB > 40.0 dB

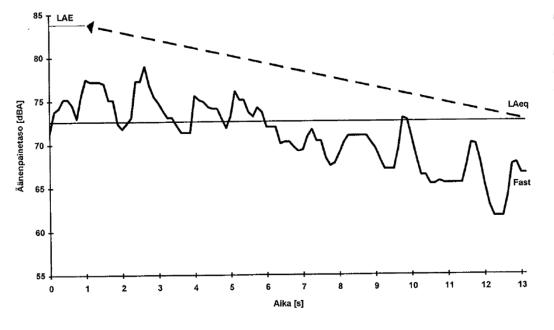
> 45.0 dB

> 50.0 dB > 55.0 dB > 60.0 dB > 65.0 dB > 70.0 dB > 75.0 dB > 80.0 dB

L_{den} and L_{dn}

- L_{den} (DENL, day-evening-night level) describes the noise exposure using a single number.
- It has been found to explain well the health effects of environmental noise instead of using separate values for night, evening and day.
- L_{den} involves **penalty for different times of day:**
 - day 07-19: penalty **0 dB**
 - evening 19-23: penalty 5 dB
 - night 23-07: penalty **10 dB**
- Some documents also use L_{dn}:
 - day 07-23: penalty **0** dB

I


• night 23-07: penalty **10 dB**

$$= 10 \log_{10} \left[\frac{1}{24} \left(12 \cdot 10^{(L_{Aeq,07-19}+0)/10} + 4 \cdot 10^{(L_{Aeq,19-23}+5)/10} + 8 \cdot 10^{(L_{Aeq,23-07}+10)/10} \right) \right]$$

Sound Exposure level L_{AE}

- L_{AE} (*SEL, sound exposure level*) expresses the energy of sound occurrence
- Used for sounds which consist of single occurrences:
 - Train
 - airplane
- L_{AE} means that the whole energy of the occurrences is normalized to 1-second-long occurrence so that different occurrences become comparable. (t_0 =1 s).

$$L_{AE} = L_{Aeq,T} + 10 \lg \left(\frac{T}{t_0}\right)$$

Kuva 6. Äänialtistustaso (LAE) on tapahtuman keskiäänitaso (LAeq) normalisoituna yhteen sekuntiin.

