8 Sound insulation in buildings ELEC-E5640 - Noise Control P

Valtteri Hongisto

valtteri.hongisto@turkuamk.fi 040 5851 888 Adjunct professor in Noise Control in Aalto University Research group leader in Turku University of Applied Sciences

Online Turku, 29 Nov 2021

1

Door 10M x 21M. Glazing 7M x 14M. Door Rw36dB. Glazing Rw47dB. Total sound insulation? $R_{tot} = 10 \text{ lg } \frac{\sum_{i} S_{i}}{\sum S_{i} 10^{-R_{i}}/10}$

8.1

3

Sound insulation inside buildings

Sound transmission paths:

- **Direct sound** through the separating element
- **Structural transmission** via flanking paths
 - floor, ceiling, walls
 - columns and flues

• Air paths

• via windows or doors

• HVAC

- via duct walls
- via ducts
- Slits

Airborne sound insulation – lab vs. field

- Laboratory:
 - *R* or *D*_{n,e}
 - direct sound
- Building:
 - *R*' from 1998 to 2017
 - D_{nT} after 2018
 - direct sound and flanking paths

Impact sound insulation – lab vs. field

- Field
 - 1998-2017: $L'_{n,w} + C_{I,50-2500}$
 - 2018 *L*'_{nT,w}+ C_{I,50-2500}
- Lab:
 - $L_{n,w}$
 - $L_{n,w}$ + C_{I,50-2500}

LABORATORY: Rooms are mechanically detached from each other

REAL BUILDING: Rooms are mechanically connected to each other

Effect of slits on SRI

- S_1 [m²] is the area of structural component
- R_1 [dB] is the SRI of structural component
- S_2 [m²] is the area of slits and holes
- $S_{\text{tot}} = S_1 + S_2$
- R_2 [dB] is the SRI of slits and holes
- First approximation: $R_2=0$ dB (independent on frequency) is applied in the exercise.
- Frequency dependent models include the dimensions of the slit: SRI of the slit is negative at frequencies where the slit depth is the multiple of half wavelength

7

Effect of slits on SRI – office door

- Measured values of a typical office door
 - sound insulation class 25 dB
 - 33 dB $R_{\rm w}$
- Small slits are usual due to improper workmanship.
- Therefore, the classification for doors and mobile walls (SFS 5907:2004) involve a 5 to 8 dB safety margin.

Table A.1 Door sound insulation classes and their requirements

Sound insulation class	Required minimum values achieved in laboratory measurements, $R_{\rm W}$		
25	30		
30	37		
35	42		
40	48		
45	53		

Localization of sound leak using intensity method

- Sound intensity level was measured at a distance of 15 cm from the door surface at a grid of 5x20 points
- Strong radiation of the lock around 500 Hz
- Lock was improved by a "sound trap"

Hongisto et al. (1997) Noise Con Eng J

Example of strong flanking via floating floor

- A double wall was built above a 60-mm-thick floating floor plate
- The laboratory value of the double wall was 65 dB $R_{\rm w}$.
- Measured value was 52dB R'_w. The target was 60 dB. Coincidence frequency of the floor plate was 400 Hz. Strong flanking both below and above 400 Hz.
- Cutting the plate resulted in 62 dB.

Steel reinforced concrete slab 180 mm

• It is typical that the field value is 3-5 dB lower than the laboratory value due to structural flanking.

Modeling of airborne flanking transmission – 13 paths

- One direct path (Dd).
- Four first order flanking paths (Ff)
- Four second order flanking paths (Df)
- Four third order flanking paths (Fd)
- The separating partition has an area $S_{\rm s}$
- The separating partition has four joints of lenght *l* – joint is the line connecting the flanking surfaces and the partition

Separating partition

Coupling loss factor K of a joint

RULE OF THUMB: If $m'_1=m'_2=m'_3=m'_4$, X-joint isolation is 9 dB and T-joint isolation is 6 dB.

EN 12354-1 simplified method for calculating the apparent airborne sound reduction index R'

 $R_{Dd,w} = R_{s,w} + \Delta R_{Dd,w}$ • Direct path:

- $R_{\rm s}$, $R_{\rm F}$ and $R_{\rm f}$ [dB] are the laboratory values of the concrete structures in laboratory
- $\Delta R_{\rm Dd}$ [dB] is the improvement of $R_{\rm w}$ obtained with a lining wall in laboratory conditions.
- S_{s} [m²] is the area of the separating wall
- $l_{\rm f}$ [m] is the length of the joint under question either the height or the width of separating construction

4

• Flanking paths:

$$R_{Ff,w} = \frac{R_{F,w} + R_{f,w}}{2} + \Delta R_{Ff,w} + K_{Ff} + 10 \lg \frac{S_s}{l_f}$$

$$R_{Fd,w} = \frac{R_{F,w} + R_{d,w}}{2} + \Delta R_{Fd,w} + K_{Fd} + 10 \lg \frac{S_s}{l_f}$$

$$R_{Df,w} = \frac{R_{D,w} + R_{f,w}}{2} + \Delta R_{Df,w} + K_{Df} + 10 \lg \frac{S_s}{l_f}$$

• All

13 paths:
$$R'_{w} = -10 \lg \left[10^{-R_{Dd,w}/10} + \sum_{F=f=1}^{4} 10^{-R_{Ff,w}/10} + \sum_{f=1}^{4} 10^{-R_{Df,w}/10} + \sum_{F=1}^{4} 10^{-R_{Fd,w}/10} + \sum_{F=1}^{4$$

4

14

Airborne flanking via ducts

- Flanking is noticeable when the partition is better than 35...45 dB *R*'_w
- Flanking is prevented by a silencer
- Flanking increases with increasing duct size because the impedance of the hole increases with decreasing size

SRI of the duct, $R_{\rm D}$ [dB] can be roughly estimated by

$$R_D = D_1 + D_s + D_d + D_2$$

- D_1 =attenuation of the terminal in room 1
 - Product values are not available in terminal speficications so one needs to use D₁=D₂.
 - Open terminal: D₁=0
- $D_{\rm s}$ is the total attenuation of silencers in the duct
- $D_{\rm g}$ is the attenuation caused by the duct divisions (branches)
- D_2 =is the attenuation of terminal in room 2
 - Product values are available in terminal specifications
- Aggregate sound reduction index

$$R_{tot} = 101 \text{g} \left[\frac{S_D + S_W}{S_D 10^{-R_D/10} + S_W \cdot 10^{-R_W/10}} \right]$$

- $S_{\rm S}$ [m²] is the physical area of the duct towards room 1
- $S_{\rm W}$ [m²] is the physical area of the wall between rooms
- $R_{\rm W}$ [dB] is the sound reduction index of the partition

Airborne flanking via ducts – Laboratory testing

- terminal (such as range hood) is installed to both rooms
- terminals are connected by a duct
- common duct is terminated by a silencer in both ends to avoid reflections

Airborne flanking via ducts – A measurement result

Duct components from room 1 to room 2:

- room 1
- 90° bend in 125 mm duct
- 125 mm duct 600 mm
- 125 to 160 mm transformer
- T-branch from 160 to 250 mm
- 250 mm duct 3000 mm
- T-branch from 250 to 160 mm
- 125 mm duct 600 mm
- 90° bend in 125 mm duct
- room 2
- Undamped open duct ends, no terminal
- Damped duct ends are covered with steel plug

 Hongisto V, Häggblom H, Työterveyslaitos, 2009. p. 29

Transmission of airborne sound to and from the duct

- L_{W2} [dB] is the sound power level inside the duct
- L_{p,1} [dB] is the SPL in the room outside the duct
- R [dB] is the sound reduction index of the duct wall
- S_k [dB] is the surface area of the duct in the room

- L_{W1} [dB] is the sound power level inside the duct
- A [m²] is the absorption area of the room

$$L_{p,2} = L_{W,1} - R + 10 \lg \frac{S_k}{A_2 S_1} + 3$$

Sound reduction index R of duct walls

• The values can be used to estimate the transmission through the duct walls.

Laine, Suomen LVI-Liitto r.y.

Sound insulation demand of facades

Decision of government 993/92

- Facades shall be dimensioned so that the regulated values for indoor noise level, L_{A,eq,s}, are not exceeded
- Outdoor noise level L_{A,eq,u} is estimated, measured or predicted
 - the level without the reflecting effect of the house under question
 - If the level is measured within 10 mm distance from the facade, 6 dB is reduced from the measured value to obtain the value without the effect of standing wave
- Alternative markings in land use plans:
 - $\Delta L = L_{A,eq,u} L_{A,eq,s}$
 - when the use of the building is known
 - $L_{A,eq,s}$ is the regulated indoor noise level
 - *L*_{A,eq,u}
 - when the use of the building is unknown

	Day tim e 07-22 T =15 h	Night tim e 22-07 T =9 h
Regulated values outdoors	L _{A,eq,T} [dB]	L _{A,eq,T} [dB]
Residential areas, recreational areas, health care		
accommodations	55	50
New areas	55	45
Educational areas	55	-
Residential areas for holiday seasons, camping areas,		
protected natural areas	45	40
Regulated values indoors	L _{A,eq,T} [dB]	L _{A,eq,T} [dB]
Living, patient and accommodation rooms	35	30
Education and meeting spaces	35	-
Service and office rooms	45	

NOTE. If the noise includes impulsive or narrow-band character, 5 dB is added to the measured or predicted value before comparing to the tabulated values.

Dimensioning of facade and its componentsYmpäristöopas 108, ympäristöministeriö(Ministry method) $R_{A,tr} = R_w + C_{tr}$

- 1. Required level difference ΔL [dB] i.e. demand:
- 2. Required total sound insulation $R_{tr,vaad}$ [dB]:
- 3. Required total sound insulation $R_{A,tr,kok}$ [dB]:
 - Requirements concern the single-number quantity $R_w + C_{tr}$
- 4. Requirement for windows and doors, $R_{A,tr,ikk}$ [dB]:
- 5. Requirement for the wall $R_{A,tr,sein\ddot{a}}$ [dB]:
- 6. Requirement for small element $D_{n,e,A,tr}$ [dB]:

Correction factors:

$S/S_{\rm H}$	2.5	2.0	1.6	1.3	1.0	0.8	0.6	0.5	0.4
K_1 (dB)	5	4	3	2	1	0	-1	-2	-3
$(\Sigma S_i)/S$	0.10	0.13	0.15	0.20	0.25	0.30	0.40	0.50	
K_2 (dB)	-6	-5	-4	-3	-3	-2	-1	0	

S [m²] area of the facade in the room

 $S_{\rm H} \,[{\rm m}^2]$ is the floor area of the room

 $\Sigma S_{i} [m^{2}]$ is the total area of windows and doors in the facade

$$\Delta L = L_{A,eq,u} - L_{A,eq,s}$$

$$R_{tr,vaad} = \Delta L + K_1 + 7$$

$$R_{A,tr,kok} \ge R_{tr,vaad}$$

$$R_{A,tr,ikk} \ge R_{tr,vaad} + K_2$$

$$R_{A,tr,sein\ddot{a}} \ge R_{tr,vaad} + 3$$

$$D_{n,e,A,tr} \ge R_{tr,vaad} + 5$$

Event-based environmental noises such as railway or airport noise: mean of the maximum levels L_{AFmax} should not exceed the requirement for $L_{A,eq,s}$ more than 10 dB.

Alternative method, RT 084.30 (1975)

- Facade elements are not always available with precisely desired values given by the Ministry method
- RT method is applied to check the outcome with the true values.
- The level difference $\Delta L_{A,i}$ caused by component i is:

$$\Delta L_{A,i} = R_w + C_{tr} - 7 - 10 \cdot \log_{10} \left(\frac{S_i}{S_H}\right)$$

- $S_i [m^2]$ is the area of component
- $S_{\rm H}$ [m²] is the room's floor area
- Level difference produced by all N components of the facade, $\Delta L_{A \text{ tot}}$, is

$$\Delta L_{A,tot} = -10 \cdot \log_{10} \left(\sum_{i=1}^{N} 10^{-\Delta L_{A,i}/10} \right)$$

• The value shall exceed ΔL of the facade stated in previous slide

References

- Finnish Government resolution of reference values of noise levels № 993/1992 (1992, October 29), Retrieved March 31, 2015, from http://www.finlex.fi/fi/laki/alkup/1992/19920993.
- Hongisto V, Keränen J, Lindgren M, Sound insulation of doors Part 2: Comparison between measurement results and predictions, Journal of Sound and Vibration 230(1) 2000 149-170.
- Hongisto V, Viljanen V, Koskela H, Nieminen K, Lindgren M, An automatic system and a test procedure for sound insulation measurements using sound intensity technique, Noise Control Engineering Journal 45 (2) 1997 85-94.
- Hongisto, V. (2000). Sound insulation of doors Part 1: Prediction models for structural and leak transmission, Journal of Sound and Vibration 230(1) 133-148.
- Hongisto, V. (2001). A case study of flanking transmission through double structures, Applied Acoustics, 62(5) 589-599.
- Ministry of the Environment. (2003). "Dimensioning of the sound insulation of building façades," Environment Guide 108, Helsinki, Finland (Available in Finnish).
- RIL 243-1-2007 Rakennusten akustinen suunnittelu. Akustiikan perusteet. Suomen Rakennusinsinöörien Liitto RIL ry., 224 s, Helsinki, 2007. (In Finnish).
- VDI 2081 "Geräuscherzeugung und Lärmminderung in Raumlufttechnischen Anlagen", Verein Deutcher Ingenieure, Germany,