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October 2021

These lecture notes are written for a research M.Sc. course in microe-
conomic theory covering welfare economics and competititive markets.
They are meant to complement the course textbook ’Microeconomic The-
ory’ by Mas-Colell, Whinston and Green and the material presented in the
lectures. Special thanks to Mikael Mäkimattila for comments.

Introduction

The four parts in the research M.Sc. sequence in microeconomic theory
at Helsinki GSE cover: Decision Theory (Part I), Welfare Economics and
Competitive Markets (Part II and this course), Game Theory (Part III) and
Economics of Information (Part IV). At a very general level, the aim of Part
II is to introduce formal models of economies consisting of multiple eco-
nomic agents. Key concepts for analyzing economies revolve around eval-
uating economic outcomes (often called allocations), considering various
economic institutions (in particular competitive markets) and aggregating
individual behavior within the institutions. Part III extends the analysis to
cover strategic aspects, Part IV concentrates on models of imperfect and
incomplete information.
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These lecture notes are organized as follows:

1. Economic Setup

(a) Modeling Economies: economic agents, preferences, feasible out-
comes or allocations.

(b) Assessing Economic Outcomes: Pareto efficiency, social welfare
functions, Arrow’s theorem.

2. Institutions and Allocations in Discrete Economic Models

(a) Assignment

(b) Matching

3. Competitive Markets

(a) Exchange Economies and Aggregate Excess Demand: existence
of exchange equilibrium

(b) Theory of the Firm and the Existence of General Competitive
Equilibrium

(c) Fundamental Welfare Theorems

4. Competitive Equilibrium Analysis

(a) Assignment Markets: housing

(b) Financial Markets: pari-mutuel betting

(c) Models of Trade
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1 Economic Setup

1.1 Primitives for Social Choice

Microeconomic Theory I focuses on decision theory, i.e. the choice be-
havior of a single economic agent. In this course, we consider economic
decisions and outcomes for groups of agents.

As the starting point, we take a set N = {1, ..., n} of economic agents
and a set of social outcomes or alternatives A. Each outcome contains a
complete description of all relevant aspects to all economic agents.

As in Microeconomic Theory I, we assume that each i ∈ N has a ra-
tional (i.e. complete and transitive) preference order on the set of alterna-
tives. We denote the preference relation of agent i by �i. We write �i for
the strict part of �i and ∼i for the indifference relation induced by �i.

In the first part of the course, we are mainly interested in evaluating
different institutions, i.e. ways in which social outcomes are decided. In
the second part of the course, we look more carefully at a particular insti-
tution, i.e. competitive markets as a means for reaching social outcomes.
Microeconomic Theory III and IV adopt a different approach to decision
making for groups of agents based on non-cooperative game theory. In
those courses, each economic agent has to make an independent choice
and the vector of choices determines the social outcome.

The starting point for our analysis is hence a society.

Definition 1.1. A society is a collection (N ,A, {�i}ni=1), where

1. N is a set of agents.

2. A is a set of social outcomes.

3. For all i ∈ N , the preference relation �i is a complete and transitive
order on A, i.e.

i) for all i and all a, b ∈ A, either a �i b, or b �i a or both, and
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ii) for all i and for all a, b, c ∈ A,

(a �i b) ∧ (b �i c) =⇒ a �i c.

Examples

1. A society consisting of agents N = {1, 2, 3, 4} and houses {a, b, c, d}.
We assume that each house is occupied by a single agent. The out-
comes in this model can then be described by a bijective function
m : N → {a, b, c, d}, where m(i) ∈ {a, b, c, d} is the house occupied
by agent i. We say in such cases that the function m is a matching of
the agents to houses. The set of possible social allocations is then the
set A of all possible matchings, i.e.:

A = {m : N → {a, b, c, d}|m is bijective}.

Exercise: How many different matchings exist?

Each agent i has a preference order �i on A.

We say that the model has no externalities if for all i ∈ {1, 2, 3, 4} and
for all m,m′ ∈ A, we have

m(i) = m′(i) =⇒ m ∼i m′.

In this case, individual preferences on which house to occupy are
sufficient to determine the individual preferences over outcomes.

2. A society consisting of employers E = {e1, ..., en} and workers W =

{w1, ...wm}. An outcome is a not necessarily one-to-one function µ :

W → E. The set of outcomes A is then the set of all functions from
W toE. All workers i ∈ W and all employers j ∈ E have preferences
over A.

We say again that the model has no externalities if for all i ∈ W and
j ∈ E, and all µ, µ′ ∈ A:

µ(i) = µ′(i) =⇒ µ ∼i µ′, and
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µ−1(j) = µ′−1(j) =⇒ µ ∼j µ′,

where µ−1(j) = {i ∈ W |µ(j) = i}.

In words, the workers care only about the employer for whom they
work and the firm only cares about the set of workers that it employs.
If each firm has a single task and n = m, then the set of outcomes is
the set of possible bijections (or matchings) from W to E as in the
previous example. The notable difference is that now both sides of
the match have. preferences whereas houses in the previous example
did not have preferences.

3. A society consisting of n consumers i ∈ {1, ..., n} and a total quantity
x̄l > 0 of divisible good l ∈ {1, .., L} to be shared between the con-
sumers. Outcomes are vectors of non-negative consumption bundles
that add up to no more than the total resources available:

A = ((x11, ..., xnL), (x21, ..., x2L), ..., (xn1, ..., xnL)) =: x ∈ RnL
+ ,

such that:
n∑
i=1

xil ≤ x̄l for all l.

In this case, we call the outcomes allocations. Each consumer i has
continuous preferences �i over the consumption set RL

+.

We say that the model has no externalities if for all i and all x,x′ ∈ A,

(xi1, ...xiL) = (x′i1, ..., x
′
iL) =⇒ x ∼i x′.

4. Buyers (or consumers) i ∈ {1, .., b} =: B and sellers j ∈ {1, ..., s} =: S

producing a homogenous discrete good. An outcome consists of a
collection of non-negative integer-valued vectors {q(i, j)}i∈B,j∈S in-
terpreted as the number of goods that consumer i buys from seller j
and non-negative real vectors {p(i, j)}i∈B,j∈S interpreted as the pay-
ment that consumer i makes to seller j.
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Buyer i’s preferences are represented by the quasi-linear function

ui

(∑
j

q(ij)

)
−
∑
j

p(i, j).

In words, the consumer gets utility from the number of goods con-
sumed and disutility from her payments to all sellers. Seller j’s pref-
erences are represented by

∑
i

p(i, j)− cj

(∑
i

q(i, j)

)
.

In words, the seller’s preferences are determined by her profit, i.e.
the sales revenue net of production costs.

1.2 Criteria for social choice

In a society consisting of a single decision maker, deciding how to choose
is not that hard. We are given her preference order so it is quite uncontro-
versial to suggest that choice be consistent with preferences. With multiple
members of society, individual preferences may disagree on the ranking of
various alternatives. Social Choice Theory is a branch of economics that
aims at arriving a rational social preference for any society. Clearly the
primitives on which such social preferences may depend are the available
options, i.e. the outcomes for the society and the individual preferences
over those outcomes.

Following Arrow (1951), the task is to come up with a social prefer-
ence function Φ that has the set of all rational preference profiles �:= (�1

, ...,�n) over a finite set of social outcomes A as its domain. The range of
the social preference function is a subset of the set of rational preference
rankings over the social alternatives. We write Φ(�) for the social prefer-
ence that obtains under Φ when the individual preferences are given by the
profile (�1, ...,�n). Often we will write the value of the social preference
function as �x with some superscript x indicating the function operating
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on the profile of preferences. For example below, �D indicates the dicta-
torial social preference on A induced by the individual preference profile
�.

Examples

1. Dictatorial rule

The easiest social preference function to describe is the dictatorial so-
cial choice function. Pick any i∗ ∈ {1, ..., n} and define the dictatorial
social preference function �D by the following: for all a, b ∈ A, and
for all preference profiles (�1, ...,�n),

a �i∗ b =⇒ a �D b,

where we write: a �D b ⇐⇒ (a �D b) ∧ ¬(b �D a).

Notice that it is not necessarily the case that �D=�i∗ since the social
preference is left arbitrary between for ranking of a, b ∈ Awith a ∼i∗
b.

Exercise: Show the resulting social preference is a legitimate rational
order on the social outcomes for all profiles of rational individual
preferences.

2. Borda rule

Denote the set of outcomes by A := {a1, ..., ak}. For each agent i
in the society, and for each alternative aj ∈ A, and each preference
profile �, compute

r(i, j) = #{aj′ |aj′ �i aj}+
1

2
#{aj′ |aj′ ∼i aj},

i.e. the number of alternatives that are better than aj in agent i’s
ranking plus half the number of alternatives that are equally good.
For each aj , compute u(aj) =

∑
i r(i, j).
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Consider the following binary relation �B defined on A by: aj �B

aj′ ⇐⇒ u(aj) ≤ u(aj′). Notice that the binary relation depends
obviously on the underlying profile of preferences.

Exercise: Show that �B is a rational preference for all �. The result-
ing ranking of the alternatives is called the Borda rule.

3. Majority rule

One of the most popular rules for ranking alternatives is the majority
rule. Continuing with the notation of the previous example for social
outcomes, we let n(aj, aj′) = #{i|aj �i aj′}, i.e. is the number of
agents that consider aj at least as good as a′j . Majority rule relation
�M is defined by the following binary relation on A:

aj �M aj′ ⇐⇒ n(aj, aj′) ≤ n(aj′ , aj).

Unfortunately �M is not a rational ordering. To see this, consider the
most famous (counter)example of social choice theory, the Condorcet
paradox. Suppose that:

a1 �1 a2 �1 a3,

and
a2 �2 a3 �2 a1,

and
a3 �3 a1 �3 a2.

Then we get by pairwise comparisons of the three distinct pairs of
alternatives that:

a1 �M a2, and a2 �M a3, but a3 �M a1.

But this contradicts transitivity of �M .
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Here we see two possible social preference functions: the dictatorial
one and the one giving rise to Borda rule. Are these functions reason-
able and what criteria should one set for preference aggregation. In other
words, what are desirable properties for a social preference function? We
have already required that an acceptable social preference function out-
puts a rational preference ordering for any profile of rational preferences
in the society. Let’s state this as a formal assumption sometimes called the
unrestricted or universal domain assumption.

Assumption 1.1. The domain of the social preference function Φ is the set
of all rational preference profiles (�1, ...,�n) over A. The range of Φ is a
subset of the set of rational preferences on A.

Definition 1.2. A social choice function Φ satisfies unanimity if for any
preference profile � (�1, ...,�n) and any pair of social outcomes a, b ∈ A
such that a �i b for all i ∈ {1, ..., n},

a Φ(�) b and ¬(b Φ(�) a).

In words, unanimity just states that the if all agents in the society strictly
prefer a to b, then the social preference also strictly prefers a to b. The re-
quirement of unanimity for social choice functions is one of the least con-
troversial modeling choices made in economics.

Definition 1.3. The social choice function Φ satisfies independence of irrel-
evant alternatives if for any two individual preference profiles � = (�1

, ...,�n) and �′ = (�′1, ...,�′n), and any social outcomes a, b ∈ A such that
a �i b ⇐⇒ a �′i b for all i ∈ {1, ..., n} :

a Φ(�) b ⇐⇒ a Φ(�′) b.

Notice that independence of irrelevant alternatives (IIA) is similar in
spirit to weak axiom of revealed preference. Societal preferences on A
induce preferences on all subsets of A and in particular on {a, b}. Soci-
etal preferences over these two alternatives ”should” then depend only on
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how agents in the society rank a versus b and not on their preferences on
some infeasible social outcomes c. This requirement is not as compelling
for societal preferences as it is for individual decision theory. For example
Borda rule as defined above violates IIA (can you show this?).

The society is said to have a dictator i∗ ∈ N if i∗’s preferences deter-
mine the societal preference in the following sense.

Definition 1.4. A social preference function Φ is dictatorial if there is some
i∗ ∈ {1, ..., n} such that for all �, and all a, b ∈ A,

a �i∗ b =⇒ (a Φ(�) b) and ¬(b Φ(�) a).

Clearly, having a dictatorial rule is not a very desirable situation for the
society even though it satisfies unanimity and IIA (can you show this?).
With these properties, we have the ingredients for the most important re-
sult in Social Choice Theory.

Theorem 1.1 (Arrow’s Theorem). Suppose that A has at least three ele-
ments and the social preference function Φ satisfies Assumption 1.1. Then
if Φ satisfies unanimity and independence of irrelevant alternatives, it is
dictatorial.

In the proof below, I denote the social preference induced by the profile
(�1, ...,�n) by � for notational convenience. It should be kept in mind
that this preference depends on the underlying profile of preferences. As
before, I denote strict social preference by�. For social preference induced
by profile (�′1, ...,�′n) is denoted by �′.

Proof. We assume that Φ satisfies 1.1, unanimity and IIA and show that
it is dictatorial.

STEP 1 Consider a profile (�1, ...,�n) such that for all i, either a �i b for
all a 6= b or b �i a for all a 6= b. Then either a � b or b � a.

Proof. Assume to the contrary that for some a, c 6= b, we have a � b � c.
Consider another preference profile (�′1, ...,�′n), where �i=�′i if c �i a.
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If a �i c, then modify the ranking of alternative c in �i to construct a
new individual preference �′i by requiring that c �′i a and a′ �′i c for all
a′ 6= a such that a′ �i a.

(In words, the preference of i is unchanged if c �i a, but a �i c, then
alternative c is raised to a position immediately above a (and therefore
below b if b �i a) in the new ranking �′i. This change does not change the
relative ranking of a, b or b, c for any agent.)

Let�′ be the social preference generated by the new profile (�′1, ...,�′n).
By unanimity, c �′ a. Since a �i b ⇐⇒ a �′i b for all i and a � b, IIA
implies that a �′ b. Since b �i c ⇐⇒ b �′i c for all i and b � c, IIA implies
that b �′ c. By transitivity, a �′ c contradicting c �′ a.

STEP 2 Some individual i∗ is pivotal in the sense that depending on�i∗ ,
some alternative b is ranked either at the top or at the bottom of the social
preference order � for some preference profile of other agents.

Proof. Suppose b is ranked uniquely at the bottom for all i at some fixed
preference profile. Then by unanimity b is ranked uniquely at the bottom
for the social preference �.

Consider alternative profiles indexed by k where for agents i ∈ {1, ..., k},
b is moved to the top of their preference, and the preferences of agents
i ∈ {k + 1, ..., n} (for k < n) are unchanged.

By the previous step, the social preference ranks b uniquely at the top
or at the bottom of all alternatives. Set i∗ to be the smallest k such that the
social preference ranks b at the top. Such i∗ exists since unanimity implies
that for k = n, the social preference ranks b uniquely at the top.

Denote the profile preference profile in the previous step for k = i∗ − 1

by I and the profile for k = i∗ by II. the social preference then ranks b
uniquely at the bottom in I and uniquely at the top in II.

STEP 3 For all a, c 6= b, we have a � c if a �i∗ c.

11



Proof. Construct profile III from II by changing outcome a to the top in the
ranking of i∗ so that a �i∗ b �i∗ c. Let all other agents i 6= i∗ have otherwise
arbitrary preferences, but b remains at the extreme position as in II. By IIA,
a � b at profile III since

a �i b at profile III ⇐⇒ a �i b at profile I .

Similarly by IIA, b � c at profile III since

b �i c at profile III ⇐⇒ b �i c at profile II .

By transitivity, a � c. By independence of irrelevant alternatives, a �
c if a �i∗ c.

STEP 4 For all a, we have a � b if a �i∗ b and b � a if b �i∗ a.

Proof. Consider any profile where a �i∗ b. Take an arbitrary outcome c
and modify i∗’s preference (if necessary) so that a �i∗ c �i∗ b and so that
for the other agents, c is ranked at the top. At the new profile, c � b by
unanimity.

By the previous step, we know that a �i∗ c =⇒ a � c. Hence by
transitivity, a � b at the new profile. Since all agents rank a, b in the same
way in the two profiles, we conclude by IIA that a � b at the original
profile.

The case where b �i∗ a is handled similarly.

Remark. 1. The proof is not terribly long, but it is not trivial either.
You may want to consult Geanakoplos (2005) for different ways of
proving the result.

2. Even though Arrow’s Theorem has a negative message, some rea-
sonable ways for aggregating individual preferences exist. Borda
rule is often reasonable even though if fails IIA.

12

http://dido.econ.yale.edu/~gean/art/p1116.pdf


3. Unrestricted domain is also a strong requirement. We say that indi-
vidual preferences �i are single peaked on A ⊂ R if for all x, y, z ∈ A
such that x > y > z, either y �i x or y �i z or both. If all agents
have single peaked preferences and anti-symmetric preferences, then
majority rule defined in Example 3 above produces a complete and
transitive social ranking. This result goes under the name of Median
Voter Theorem and it is due to Black (1948).

4. If one has more information on cardinal utilities of the agent, then
much more can be done. Ia a world with quasilinear preferences,
the strength of individual preferences can be quantified in terms of
money. If this (or other cardinal information on utilities) is available,
then much more can be done.

5. A separate issue concerns the incentives that individuals have for re-
porting their preferences. If individual preferences are used in social
decision making, then it may well be in the agents’ best interest to re-
port their preferences strategically. This issue is taken up in Microe-
conomic Theory III, where Gibbard-Satterthwaite Theorem plays the
role of Arrow’s Theorem in showing that the only non-trivial social
decision processes that do not give rise to strategic manipulation are
dictatorial ones (if there are three or more alternatives).

1.3 Pareto-Efficiency

Definition 1.5 (Pareto-Efficiency). Given a society with a preference pro-
file � over social outcomes A, an outcome a Pareto-dominates b if a �i b for
all i ∈ {1, ..., n} and a �i b for some i. Outcome a strictly Pareto-dominates b
if a �i b for all i. Outcome a is said to be Pareto-efficient is there is no b ∈ A
that Pareto-dominates a.

Pareto-domination induces an order �P on A: a �P b iff a Pareto-
dominates b. It should be clear that this order is transitive (since individual
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preferences are transitive) but it is far from complete.
Nevertheless, we can show that the set of Pareto-efficient outcomes is

non-empty whenever the set of outcomes is finite or the set is compact and
all individual preferences are continuous.

Definition 1.6 (Serial Dictatorship). Serial Dictatorship is defined as fol-
lows: Let agent 1 choose her set of most preferred alternatives A1 ∈ A.
By the results in Microeconomic Theory 1, this set is non-empty and in
the case with a compact A, it is also compact. Let agent 2 choose her set
of most preferred alternatives A2 ⊂ A1. Continue iteratively until the last
agent the process so that agent i chooses her most preferred outcomes in
Ai−1 for all i. The set An is the outcome of the serial dictatorship.

Proposition 1.1. The outcome of serial dictatorship is Pareto-efficient.

Proof. Left as an exercise.

In the above construction, An clearly depends the order in which the
agents make their choices. Can you show with a simple example that there
are some Pareto/efficient outcomes are not in An for any ordering of the
agents?

Suppose now that we have a family of utility functions ui where each
ui represents agent i’s preferences �i. We can then associate with each
social outcome a ∈ A, an n-dimensional real vector u(a) = u1(a), ..., un(a).
An outcome a ∈ A is then Pareto-efficient if and only if there is no b ∈ A
such that ui(b) ≥ ui(a) for all i and ui(b) > ui(a) for some i. This gives a
nice geometric interpretation to the set of Pareto-efficient points also often
called the Pareto-frontier.

Consider now a strictly increasing function W : Rn → R and the prob-
lem:

max
a∈A

W (u(a)). (1)

Proposition 1.2. If a∗ solves Problem 1, then a∗ is Pareto-efficient.
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Proof. The claim is proved by contrapositive. If a∗ is not Pareto efficient,
then there is another b ∈ A, such that ui(b) ≥ ui(a

∗) for all i and ui(b) >

ui(a
∗) for some i. Since W is a strictly increasing function, W (u(b)) >

W (u(a∗)) so a∗ is not a solution to Problem 1.

The converse of this Proposition is also true, but since it is not practical
to work with the set of all (possibly quite complicated) strictly increasing
functions W , it would be good if the converse (or at least something close
to that) would be true for simpleW . A linearW would certainly be simple
to handle. An application of the separating hyperplane theorem can be
used to prove the converse for the case where the set F = {v ∈ Rn|v ≤
u(a) for some a ∈ A is convex.

Proposition 1.3. If F is convex and a∗ is Pareto-efficient, then there is a
λ = (λ1, ..., λn) 6= 0 with λi ≥ 0 for all i, such that a∗ solves

max
a∈A

n∑
i=1

λiui(a).

Proof. Let P := {v ∈ Rn|v ≥ u(a∗)}. Then F and P are convex sets whose
intersection has an empty interior. Separating hyperplane theorem guar-
antees the existence of a vector λ ∈ Rn and a real number γ such that
λ · v ≤ γ for all v ∈ F and λ · v ≥ γ for all v ∈ P . Since u(a∗) ∈ F ∩ P , we
conclude that λ · u(a∗) = γ ≥ λ · v for all v ∈ F . Furthermore, λi ≥ 0 since
P includes points u(a∗) + Mei for all positive M , where ei is the ith unit
vector.

Remark. 1. F is convex if A is a convex set and ui is concave for all i.

2. If ui(a) is the Bernoulli utility function of agent i for all i, then the set
F of all utility vectors for the corresponding von-Neumann - Mor-
genstern expected utility functions over lotteries on the outcomes is
convex.
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One social utility function that has attracted some attention is the Rawl-
sian functionw(a) := mini∈{1,...,n}{ui(a)}. The maximizers ofw(a) need not
be Pareto-efficient, but can you find a modification for the Rawlsian func-
tion so that its maximizers are Pareto-efficient outcomes?
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2 Institutions and Allocations in Discrete Economies

This section is a first introduction to the use of welfare economic analysis
in market contexts. The first subsection gives the simplest possible exam-
ple for discussing different allocation methods in a society consisting of
multiple agents. It is meant to illustrate the general methodology rather
than represent an important real-life market. The second subsection pro-
vides a more elaborate model that has been applied in practice to impor-
tant allocation problems. In a first-year course we cannot unfortunately go
very deep into the applications or extensions of the model, but I hope you
get a sense of the type of research done in the relatively new paradigm of
market design.

2.1 Assignment

We specialize the problem of choosing social outcomes to that of finding
feasible housing arrangements for the agents N := {1, ..., n}. The mem-
bers of the society have access to a set of houses H = {1, ..., h} and the
number of houses is assumed to be at least as large as the number of
agents.

2.1.1 Allocations and efficiency

We assume that all houses are single occupancy and therefore the set of
feasible outcomes is a one-to-one function from m : N → H. We call
such functions allocations. An allocation is then identified with a vector
(m(1), ...,m(n)) where m(i) ∈ H denotes the house assigned to i ∈ N .
Hence the name assignment model.

We also assume that the housing decisions impose no externalities on
occupants of other houses so that the preferences of i ∈ N are over the
set of houses and hence the preferences �i of i over outcomes are deter-
mined by the house m(i) assigned to i in allocation m. With this in mind,
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we define an assignment society without externalities directly in terms of
individual preferences over houses.

Definition 2.1. A society without externalities is a collection (N ,H, {�i}i∈N )

of agents i ∈ N := {1, ..., n}, houses H = {1, ..., h}, where the number
of houses is at least as large as the number of agents, and an individual
rational preference relation for each i over H. An allocation is a one-to-one
function m : N → A.

Example 2.1. Consider a society with four agents N = {1, 2, 3, 4} and
five houses H = {a, b, c, d, e}. The individual preferences are given in the
following table where agents represent the columns and the houses are
ranked in the descending order of preference within columns.

1 2 3 4
b a b© d
c© c e e©
e d© a a
a b c b
d e d c

Figure 1: The allocation is represented by the circled elements in the table.

Definition 2.2. An allocation m(1), ...,m(N) is Pareto-efficient if there is no
other allocation m′ such that m(i) �i m′(i) for all i and m(i) �i m′(i) for
some i.

The allocation depicted in Figure 1 is not Pareto-efficient. House a is
not occupied in that allocation, but agent 2 ranks a the highest. Hence
m′ = (c, a, b, e) Pareto-dominates m = (c, d, b, e). But m′′ = (c, a, b, d)

Pareto-dominates m′. You should verify that m′′ is Pareto-efficient. An
allocation can be Pareto-efficient only if all agents (weakly) prefer their as-
signed house to all unoccupied houses. In m′′ the only unoccupied house
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is e. Can you find another Pareto-efficient allocation where some other
house is left unoccupied?

A useful observation on the set of Pareto-efficient allocations is the fol-
lowing: some agent is assigned her favorite house. Let h∗(i) denote any
house that is at the top of agent i’s ranking.

Proposition 2.1. If m is a Pareto-efficient allocation, then for all i ∈ N ,
there is a j ∈ N such that m(j) = h∗(i) and for some i∗ ∈ N , m(i∗) = h∗(i).

Proof. i) If h∗(i) is unoccupied for some i in allocation m, then m is not
Pareto-efficient.

ii) Suppose m is Pareto-efficient and m(i) 6= h∗(i) for all i ∈ N . Con-
sider the agents in an arbitrary order i1, i2, ..., in. Construct a chain ik →
ik+1 for all k by requiring m(ik+1) = h∗(ik) so that ik+1 occupies the fa-
vorite house of ik. Since the favorite house of all agents is occupied by
some agent by part i), there must be a k∗ such that ik∗+1 = il for some
l ≤ k∗. Let m′ be the allocation where m′(ik) = m(ik+1) for l ≤ k ≤ k∗, and
m′(ik) = m(ik) otherwise. Then m′ Pareto-dominates m and the claim is
proved.

2.1.2 Property Rights and Market Equilibrium

For this subsection, we assume that the starting point in the society is that
the houses are initially owned by the agents. The key difference to the
previous discussion of Pareto-efficiency is that we now give the agents
property rights to their houses. They can stay in their own house if they
so decide.

An allocation in this context is a bijection from the agents to the set of
houses (initially occupied by some agent). We denote the initial allocation
in the society by e = (e(1), ..., e(n)), andH = {e(i)}i∈N .

Definition 2.3. An economy is a society without externalities together with
an initial allocation e denoted by (N ,H, {�i}i∈N , e) .
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We are interested in allowing the agents in our economy to trade. You
should notice that this is somewhat weird trading since there is no money
or any other good that could be exchanged for the houses. We will take up
trading with a richer set of trade-offs in sections 3 and 4 of these notes.

Nevertheless, it is instructive to see how to construct a market with
prices for this very simple setup. Towards this, we assign a (positive) real
number p(h) to each house and interpret it as the price of the house. Agent
i occupies initially house e(i) so we determine her budget as p(e(i)).

The idea is to construct a market equilibrium for the economy where
all agents choose the best house that they can afford. In other words, each
i chooses the best house in {h′ ∈ H| p(h′) ≤ p(e(i))}.

Definition 2.4. A market equilibrium of the economy (N ,H, {�i}i∈N , e) is a
house price vector p and a vector of housing demands a = (a(1), ..., a(n))

with a(i) ∈ H for all i such that
i) For all i, a(i) �i h′ for all h′ such that p(h′) ≤ p(e(i))

ii) a is an allocation (i.e. the vector of optimal demands is a matching).

Notice the structure of this definition. An equilibrium is a price and
an vector of demands with the requirement that the demands are opti-
mal within the feasible set given the prices and markets clear (in this case,
this implies that the demand vectors form an allocation represented by
a matching). The agents are not required to know anything about other
agents’ preferences or total resources in the society. It is enough that they
know their own preferences and their budget set. Of course, there is no ex-
planation of how an equilibrium might arise. Equilibrium prices depend
on the individual preferences. But if individual preferences are not known
to others, how can prices depend on preferences. Maybe there is a mech-
anism that asks individuals about their preferences? But then the issue of
manipulability arises. These issues are treated (to a very limited extent) in
Parts III and IV of the Microeconomic Theory sequence.

To start the analysis, we discuss how to move between two allocations.
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Definition 2.5. From an arbitrary initial allocation, we define a trading cy-
cle to be an ordered set of distinct agents (i1, ..., ik) with the interpretation
that the agents trade their houses in such a way that il gets the house of
il+1 for l < k, and ik gets the house of i1.

Definition 2.6. A trading partition is a collection of t trading cycles such
that each agent belong to exactly one trading cycle. We say that a trading
partition {(i11, ..., i1k1), ..., (i

t
1, ...i

t
kt

)} transforms allocation m to allocation m′

if for each j ∈ {1, ..., t},

m′(ijl ) = m(ijl+1) for all l ∈ {1, ..., kj − 1} and

m′(ijkj) = m(ij1).

Since this is quite a complicated definition, lets see what trading parti-
tions do in examples.

Example 2.2. Start withm = (a, b, c, d, e). The trading partition {(1, 3, 4), (2, 5)}
transforms m to m′ = (c, e, d, a, b)}. The trading partition {(1, 3, 5, 4)(2)}
transforms m′ to m′′ = (d, e, b, c, a).

Example 2.3. Consider two allocationsm = (b, c, e, d, a) andm′ = (a, c, d, e, b).
Since agent 1 gets the house of agent 5, agent 5 gets the house of agent 1,
agent 2 keeps her house and agents 3 and 4 swap houses to get from m to
m′, we see that {(1, 5), (2), (3, 4)} transforms m to m′.

The cycle decomposition theorem for permutations guarantees that for
any two allocations m and m′, there is a unique trading partition trans-
forming m to m′. (Sketch of a proof: Pick an arbitrary i1. If m′(i1) = m(i1),
add {(i1)} to the trading partition T . If not, take i2 to be defined by
m(i2) = m′(i1) and add (i1, i2) to T if m′(i2) = m(i1). If not, define i3

by m(i3) = m′(i2) etc until agent ik such that m′(ik) = m(i1). Since n is
finite, such an ik must exist (why can’t we have m′(ik) = m(il) for some
1 < l < k?). Then add (i1, ..., ik) to T. Restart the process with the set
N \ {i1, ..., ik} to find the next trading cycle and repeat until no agents
remain.)
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Proposition 2.2. Let (p,a) be a market equilibrium for the economy (N ,H, {�i
}i∈N , e) and T the trading partition transforming e to a. Then the prices
of all houses in any trading cycle in T are equal.

Proof. Let (i1, ..., ik) be a trading cycle of T . Then a(il) = e(il+1) for l < k,
and a(ik) = e(i1).This means for l < k that e(il+1) must be in the budget
set of il or p(e(l+1) ≤ p(el) and similarly p(e1) ≤ p(e(ik)). But then all the
prices must be equal.

Definition 2.7. A trading cycle (i1, ..., ik) is a top trading cycle if we set
ik+1 = i1 and we have for all l ≤ k, e(il+1) �il h′ for all h′ ∈ H

Proposition 2.3. Every economy (N ,H, {�i}i∈N , e) has a top trading cycle.

Proof. Start with an arbitrary i1. Ask i1 to point at the occupants of her
favorite house. If she points at herself, then (i1) is a trivial top trading
cycle. Otherwise, i2 be a person that i1 points at. Ask i2 to point at the
occupants of her favorite house. If she points at herself, there is the trivial
trading cycle (i2). If she points at i1, then (i1, i2) is a top trading cycle. Oth-
erwise, let i3 be any agent that i2 points. Continue inductively until some
ik points at some il with l ≤ k. Such a k must exist since (i1, ..., in−1) are all
distinct and in must point at herself or some other agent. By construction,
(il, il+1, ..., ik) is a top trading cycle.

Exercise: Show that an economy can have many top trading cycles.
We are now in a position to prove the existence of a market equilibrium

and also to demonstrate some of its properties.

Theorem 2.1 (Existence of a Market Equilibrium). Every economy has a
market equilibrium.

Proof. By Proposition 2.3, (N ,H, {�i}i∈N , e) has a top trading cycle (i1, ..., ik).
Assign each of the agents in this cycle their favorite house and attach the
same price p1 = p(e(il)) for l ≤ k. Consider a new economy consisting of
N1 := N \ {i1, ..., ik}, houses H1 := H \ ∪kl=1{e(il)}, preferences of i ∈ N1
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on H1 induced by the original preference, and initial allocation (e(i))i∈N1 .
By Proposition 2.3, this new economy has a top trading cycle. Assign the
houses to the agents according to the trading cycle and set price p2 < p1 to
all houses in this second cycle. Remove the agents and the houses in the
cycle to arrive at a smaller sub-economy. Continue the house assignment
and price setting according to the top trading cycles recursively until no
agents are left (the process ends in at most n steps). This process arrives at
an allocation of houses to agents and a price vector such that the assigned
house is by construction at least as good as any of the houses in the agent’s
budget set.

It is a good exercise to show that if the agents have strict preferences
(no ties), then the equilibrium allocation is unique. Equilibrium prices
are obviously not pinned down since only the ordinal prices matter. You
should find an example to show that the ordinal ranking of house prices
can also differ across equilibria.

The next two theorems relate equilibrium allocations to Pareto-efficient
allocations in the case where the preferences are strict.

Theorem 2.2 (First Welfare Theorem). If the agents have strict preferences
over houses, then every market equilibrium allocation is Pareto-efficient.

Proof. Let (p,a) be a market equilibrium of the economy (N ,H, {�i}i∈N , e).
If a′ is an allocation that Pareto-dominates a, then a′(i) �i a(i) for all i and
a′(i) �i a(i) for some i. But a′(i) �i a(i) =⇒ p(a′(i)) > p(a(i)) since
otherwise a′(i) would be budget feasible. If a′(i) ∼i a(i), strict preferences
imply that a′(i) = a(i) and thus p(a′(i)) = p(a(i)). By summing over the
agents

n∑
i=1

p(a′(i)) >
n∑
i=1

p(a(i)).

But this is not possible if both a and a′ are allocations.

Exercise: Find an example of an economy and a market equilibrium
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that is not Pareto-efficient if preferences are not strict. Do all economies
have a Pareto-efficient equilibrium if preferences are not strict?

We will discuss how the situation changes if there is another good,
money, that the agents also like and the house prices are monetary so that
buying a cheaper house leaves more money.

Theorem 2.3 (Second Welfare Theorem). Suppose a is Pareto-efficient for
(N ,H, {�i}i∈N ) and the agents have strict preferences. Then there in all
market equilibria (p,a′) of (N ,H, {�i}i∈N ,a), we have a = a′.

Proof. If a′ is a market equilibrium allocation, a′(i) �i a(i) for all i (since
initial endowment is in the budget set for all p). If a′ 6= a, then a′(i) �i
a(i) for some i and since a′ is an allocation, this contradicts the Pareto-
efficiency of a.

These two welfare theorems are sometimes interpreted as showing that
the market mechanism is wonderful. It is not clear to me why this would
be so. The next subsection tries to make the point that many economic
institutions can have welfare theorems of the above type. In any case, let
me list the main points and also some observations on this subsection.

2.1.3 Power and the Jungle

Suppose that the agents in the society differ in terms of their power, i.e.
strength, ability to influence etc. Order the agents by descending power
so that i1 is the most powerful agent and ik is more powerful than il when-
ever l > k (we assume no ties for convenience). The consequence of power
for allocations is the following; a more powerful agent wins any strug-
gle against a less powerful one and therefore a more powerful agent can
forcefully take over any house assigned to a weaker agent. Let . denote
the complete, transitive and asymmetric binary relation on N , where i . j
means that i is more powerful than j. I will follow the colorful language
of Ariel Rubinstein for the following definition.
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Definition 2.8. A jungle is a society without externalities together with a
power relation ..

If the number of houses coincides with the number of agents, an equi-
librium for the jungle can be defined as follows:

Definition 2.9. A jungle equilibrium of the jungle (N ,H, {�i}i∈N , .) is an
allocation m such that i . j =⇒ m(i) �i m(j).

In words, an equilibrium is an allocation where no agent wants to exert
her power to claim the house of a less powerful agent. If there are more
houses than agents, the same definition goes through if we add dummy
agents that have the least power and that are indifferent between any
houses. We are ready for the first existence and welfare theorems of this
course.

Theorem 2.4. Every jungle has a jungle equilibrium. If the agents’ prefer-
ences are strict, then the equilibrium is unique.

Proof. Recalling the serial dictatorship from Section 1, let ik be the kth most
powerful agent for k ∈ {1, ..., n}. Denote one of the best houses in i1’s
ranking by h1. Assign recursively a house hk that is best in ik’s ranking of
the houses Hk := H \ {h1, ..., hk−1}. Since hl ∈ Hk for k < l, we conclude
that hil �il hik for all il . ik. The uniqueness with strict preferences over
houses is immediate.

For the rest of this section, we assume that preferences over houses are
strict for all agents.

Theorem 2.5 (First Jungle Welfare Theorem). With strict preferences over
houses, all jungle equilibria are Pareto-efficient.

Proof. Let m∗ denote the jungle equilibrium allocation constructed by the
serial dictatorship induced by .. Let m be another allocation that Pareto
dominates m∗. Let ik be the first agent according to . such that m(ik) �ik
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m∗(ik). Then for all l < k, m(il) = m∗(il) since there are no ties in prefer-
ences. But then m(ik) ∈ Hk contradicting that m∗(ik) is the best choice for
ik in Hk.

Theorem 2.6 (Second Jungle Welfare Theorem). Every Pareto-efficient Al-
location is a jungle equilibrium allocation for some power relation ..

Proof. If m is Pareto-efficient, then by Proposition 2.1, for some i1 ∈ N ,
m(i1) = h∗(i1). Give i1 the highest ranking in . and consider a society S1,
consisting of agents N1 = N \ {i1} and houses H1 = H \ {h∗(i1)}. Since m
is Pareto-efficient for the original society, (m(i))i∈N1 is Pareto-efficient for
S1. Again by Proposition 2.1, there is an agent i2 ∈ N1 such that m(i2) is
a highest ranked house for i2 in H1. Put i2 at the second highest rank of
.. Define recursively for 1 ≤ k ≤ n − 1, Nk+1 = Nk \ {ik}, and Hk+1 =

Hk \ {h∗k(ik)}, where h∗k(i) denotes the highest ranked house for i in Hk.
Put ik . ik+1. By construction, m is a jungle equilibrium for (N , H, {�i
}i∈N , .).

1. The main reason for including this subsection is to familiarize you
with the fundamental concepts (Pareto-efficiency, equilibrium, etc.)
in a simple context.

2. In the area of market design, assignment models matching models of
the next subsection and the concepts arising in these (e.g. top trading
cycles) play a key role. For a nice polemical article on Market Design,
see Kominers (2017).

3. If individual preferences depend on the entire allocation (preference
on neighbors on top of preference over own house), then equilibria
may fail to exist and they are not Pareto-efficient in general. Exter-
nalities are discussed further in Part III of the sequence on Game
Theory.
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2.2 Matching

2.2.1 Setup

Two finite populations X and Y of equal size need to be matched in pairs.
Each x ∈ X has rational preferences �x over Y as match partners and
similarly each y ∈ Y has rational preferences �y over X . Assume for sim-
plicity that all preferences are strict. Examples are abundant: i) workers
and tasks (e.g. medical students and residencies), ii) pilot and copilot, iii)
marriage market. We define formally:

Definition 2.10. A society is a collection (X, Y, {�x}x∈X , {�y}y∈Y ). A match-
ing µ ∈M for (X, Y, {�x}x∈X , {�y}y∈Y ) is a bijection fromX to Y . For each
x ∈ X , we call (x, µ(x)) a match. A matching method is a function that as-
signs a matching to each preference profile of the society.

Example 2.4. Recall the serial dictatorship from Section 1 and fix any pre-
determined order onX Let the members in x choose their match according
to this order amongst the Y that were not previously chosen. With strict
preferences, this produces a match so that serial dictatorship is a matching
method.

Let u(x, y) be the rank of y in x’s preference order (i.e. the number
of alternatives better than y recalling that we assume strict preferences).
Similarly let v(y, x) be the rank of x in y’s order.

Example 2.5. Let g(u(x, y), v(y, x)) be a strictly increasing function of its
two arguments. Then choosing µ ∈ arg minµ∈M

∑
x g(u(x, µ(x)), v(µ(x), x))

and selecting according to serial dictatorship among the matchings if there
are multiple solutions produces a matching for all preference profiles. Hence
this procedure is a matching method.

We could of course get more structure if we took cardinal representa-
tions of the preferences. For example, one could assume quasilinear pref-
erences over match and money and maximize the surplus from the match.
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The rapidly growing literature on Optimal Transport takes this route. Note
that the optimization step is far from trivial here.

Example 2.6 (The Greedy Algorithm). Continuing with the previous ex-
ample, at first step, choose (x, y) ∈ arg min(x,y)∈X×Y g(u(x, y), v(y, x) (with
multiple minimizers, choose in the order of a pre-determined order on X).
Remove this pair from X × Y and continue recursively until all x ∈ X are
matched.

Pareto-efficiency of matchings is defined in the usual way.

Definition 2.11. A matching µ ∈ M is Pareto efficient if there is no other
µ̃ ∈ M such that µ̃(x) �x µ(x), µ̃−1(y) �y µ−1(y) for all x ∈ X, y ∈ Y , and
for some x or some y, µ̃(x) �x µ(x) orµ̃−1(y) �y µ−1(y).

Exercise: Which of the matching methods result in Pareto-efficient match-
ings for all strict preference profiles?

If the match partners have autonomy on agreeing to a match, it seems
reasonable to think that a matching µ, where y �x µ(x) and x �y µ−1(y)

would not be stable because x would have an incentive to approach y and
suggest a pairing of (x, y).

Definition 2.12. A matching µ ∈ M is pairwise stable if y �x µ(x) =⇒
µ−1(y) �y x.

Exercise: Construct an example showing that serial dictatorship does
not necessarily produce a pairwise stable matching.

Exercise: Show that every pairwise stable matching is Pareto-efficient.

2.2.2 The Gale-Shapley Algorithm

An extremely widely used matching method is the Gale-Shapley algo-
rithm also known as the deferred acceptance algorithm. In this method,
agents on one side of the market (without loss of generality consider x ∈
X) make offers to the other side.
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In the first stage each x makes an offer to the highest ranked y (ac-
cording to �x). If all y receive one offer, the algorithm ends and each x

is matched with the y that got the offer. All y ∈ Y that receive multiple
offers accepts tentatively the one they ranks the highest. All other offers
are rejected at the end of the first stage.

At the beginning of each stage after the first, each y ∈ Y holds at most
one offer and during the stage she may receive new ones. All x that are
not tentatively matched sends a new offer to the highest ranked y ∈ Y that
she has not sent an offer in previous periods. At the end of the stage, each
y is tentatively matched to her best offer and rejects the others.

The algorithm stops after the first stage where no offers are rejected,
i.e. when all y have exactly one offer, and all y ∈ Y are matched with the
agents whose offer they hold.

To show that this algorithm is a matching method, we need to show
that the algorithm stops after finitely many stages in a well-defined match.

More formally, the algorithm is defined as follows:

1. At the start of stage 1:

(a) Each x ∈ X makes an offer to her 1st choice.

(b) Any y ∈ Y tentatively accepts (or keeps) the best offer and re-
jects the others (deferred acceptance).

2. At stage k,

(a) Any x ∈ X rejected at step k makes a new offer to its most
preferred y that has not rejected x in any prior stage.

(b) Every y ∈ Y tentatively accepts her most preferred acceptable
offer up to (and including) stage k, and rejects any others.

3. STOP: when no further proposals are made, and match each y ∈ Y
to the x whose whose offer she has tentatively accepted.
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Proposition 2.4. For any society and any profile of strict preferences, the
Gale-Shapley algorithm is well-defined and results in a matching.

Proof. i) No x ∈ X is ever rejected by all y ∈ Y . To see this, note that all
y that reject an offer are tentatively matched. All y tentatively matched
at some stage remain tentatively matched or matched until termination.
Since the number of agents in X and Y is the same, all y are tentatively
matched only if no x is rejected.

ii) The algorithm stops. At least one x is rejected in each non-terminal
stage and no y ever gets an offer from the same x more than once. Hence
if the algorithm does not stop, some x must be rejected by all y ∈ Y con-
tradicting i).

iii) The algorithm ends when nobody is rejected and hence no x re-
mains unmatched.

Maybe the most important reason for the popularity of Gale-Shapley
algorithms in practical markets is that it results in a pairwise stable match-
ing. If a matching is not stable, the agents in the society would have incen-
tives to search for pairwise improving opportunities to leave their current
matches. It is hard to legislate against the freedom to contract in any so-
ciety and therefore an unstable matching would be unlikely to remain in
place.

Proposition 2.5. Any matching produced by the Gale-Shapley algorithm
is pairwise stable.

Proof. Let µ be the matching and assume that y �x µ(x). Then x must
have made an offer to y in some stage prior to making an offer to µ(x).
Furthermore, y must have rejected x and tentatively accepted some x′ with
x′ �y x. Since y rejects a tentatively accepted offer only if she gets to accept
tentatively a better offer, we conclude by transitivity of�y that µ−1(y) �y x
and hence µ is pairwise stable.
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The following proposition shows that the Gale-Shapley algorithm se-
lects the best matching for all x ∈ X amongst the pairwise stable match-
ings.

Proposition 2.6. Let µ be the matching generated by the Gale-Shapley al-
gorithm. Then for all x ∈ X , and all pairwise stable µ′ ∈ M , we have
µ(x) �x µ′(x).

For the proof, I use the following terminology: agent y ∈ Y is achiev-
able for x ∈ X if there is a stable matching µ such that µ(x) = y.

Proof. Let µ be the matching produced by the Gale-Shapley algorithm and
suppose no x has been rejected by an achievable y prior to stage k of the
algorithm. Assume that in stage k, some y rejects x. This can happen only
if y tentatively accepts some x′. We show that y is not achievable to x.
Consider µ′ with y = µ′(x) and µ′(x′) achievable for x′. Then µ′ cannot
be pairwise stable since by the inductive step (y rejects x for x′ in stage
k), x′ �y x and y �x y′ for all y′ achievable to x′ (by inductive step, no
rejections by achievable y up to stage k and Gale-Shapley algorithm makes
offers in descending order of preference). Hence each x is matched with
the highest ranked y in the set of achievable Y .

Unfortunately µ is similarly the worst amongst all pairwise stable match-
ings for the Y . This follows immediately from the definition of pairwise
stability.

2.2.3 Extensions and Related Models

1. Since the manipulation of a matching mechanism is a topic for game
theory, I refrain from elaborating on this issue here. Unfortunately
the Gale-Shapley algorithm can be manipulated. This means that
if the agents are asked to report their preferences with the under-
standing that the G-S algorithm is the run based on the reported
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preferences, some agents may have an incentive to report a prefer-
ence profile different from their true one. The G-S algorithm cannot
be manipulated by x (or even coalitions of agents in X), but unfortu-
nately the agents in y can gain from manipulation their preferences.
In fact, a theorem by Al Roth proves:

Theorem 2.7. No pairwise stable matching mechanism exists where
no agent can profit by manipulating her reported preferences.

Kominers (2017), gives references on this and a number of other re-
lated topics.

2. How essential is it that we have assumed strict preferences? Many
of the results go through with weak preferences. For example, the
Gale-Shapley algorithm can be run by breaking any ties in individual
preferences in an arbitrary manner (e.g. assign numerical names to
the agent and break ties in favor of the smaller name). The outcome
of the G-S algorithm remains pairwise stable in this case as well. This
amounts to adding a stage 0 to the algorithm where ties are broken.
Not all results survive this, e.g. Proposition 2.6 is not true for weak
preferences.

3. It is quite straightforward to allow for different numbers of agents
in X and Y as well as allowing for the possibility that some x may
prefer to remain unmatched rather than be matched with some of the
y. You will encounter such variations in the Problem Set questions.

4. An important extension of the model concerns the case where the
agents on one side of the market are to be matched with groups of
agents (up to a capacity constraint) on the other side. These problems
are called school choice or college admission problems or many-to-
one matching problems for obvious reasons. Deferred acceptance
algorithms can be constructed for this case as well with straightfor-
ward modifications. Since college and school admissions are ob-
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viously a very important real world problem that needs a central-
ized admission system, research (both theoretical and empirical) into
such models is huge and still growing. A nice (and fairly recent) sur-
vey on theory developments is in Abdulkadiroğlu and Snmez (2013).
More prectical issues in school choice are covered in Cantillon (2017).

5. It is essential that there are two separate sides to be matched. The
related roommate problem with a single population X and where
a matching is a partition of X into non-overlapping pairs does not
necessarily allow for any stable matchings. You may be invited to
find such examples on a Problem Set.

6. The model of matching in this section is still quite special in the sense
that the matching is the only endogenous variable in the model.
There are no trade-offs that would allows any kind of quantification
of the strength of ordinal preferences. If the model allowed for pref-
erences over randomized allocations, the analysis would change by
quite a bit. Even more dramatic would be the introduction of money
in the model. Since many matching markets have monetary con-
tracts or prices to go with the matching of the different parties, there
is also a literature on matching with contracts. ’The Assignment
Game I: The Core’ by Shapley and Shubik (International Journal of
Game Theory, 1971) (unfortunately no free copy available) started
this literature and Kelso and Crawford (1982) connected matching
literature with auctions. Hatfield and Milgrom (2005) gave an extra
boost to this area of research. Rostek and Yoder (2020) is a recent ex-
ample (with a good discussion of the area and extensive references)
of theoretical work in this area. We discuss equilibria of assignment
models in the last section ofthese notes, where some particular mod-
els are analyzed in more detail.
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